dc.contributor.author
Land, Henrik
dc.contributor.author
Senger, Moritz
dc.contributor.author
Berggren, Gustav
dc.contributor.author
Stripp, Sven T.
dc.date.accessioned
2021-04-14T12:47:54Z
dc.date.available
2021-04-14T12:47:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30175
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29916
dc.description.abstract
Hydrogenases are redox enzymes that catalyze the conversion of protons and molecular hydrogen (H2). Based on the composition of the active site cofactor, the monometallic [Fe]-hydrogenase is distinguished from the bimetallic [NiFe]- or [FeFe]-hydrogenase. The latter has been reported with particularly high turnover activities for both H2 release and H2 oxidation, notably at neutral pH, ambient temperatures, and negligible electric overpotential. Due to these properties, [FeFe]-hydrogenase represents the “gold standard” in enzymatic hydrogen turnover. Understanding hydrogenase chemistry is crucial for the design of transition metal complexes that serve as potentially sustainable proton reduction or H2 oxidation catalysts, e.g., in electrolytic devices or fuel cells. However, even 20 years after the crystal structures of [FeFe]-hydrogenase have been published, several aspects of biological hydrogen turnover are heatedly discussed. In this perspective, we give an overview on how the diversity of naturally occurring and artificially prepared, semisynthetic [FeFe]-hydrogenases deepens our understanding of hydrogenase chemistry. In parallel, we cover recent results from biophysical techniques that go beyond the scope of conventional X-ray diffraction, EPR, and FTIR spectroscopy. Taking into account both proton transfer and electron transfer as well as the notorious sensitivity of [FeFe]-hydrogenase toward carbon monoxide, the discussion further touches upon the molecular proceedings of biological hydrogen turnover.
en
dc.format.extent
52 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
metalloenzymes
en
dc.subject
iron−sulfur enzymes
en
dc.subject
hydrogen turnover
en
dc.subject
proton-coupled electron transfer
en
dc.subject
phylogenetics
en
dc.subject
bioinorganic chemistry
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Current state of [FeFe]-hydrogenase research
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
79442
dc.title.subtitle
biodiversity and spectroscopic investigations
dcterms.bibliographicCitation.doi
10.1021/acscatal.0c01614
dcterms.bibliographicCitation.journaltitle
ACS catalysis
dcterms.bibliographicCitation.number
13
dcterms.bibliographicCitation.originalpublishername
ACS Publications
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.pagestart
7069
dcterms.bibliographicCitation.pageend
7086
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://pubs.acs.org/doi/10.1021/acscatal.0c01614
dcterms.rightsHolder.url
https://publish.acs.org/publish/author_guidelines?coden=langd5#prior_publication_policy
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2155-5435