dc.contributor.author
Niederhausen, Jens
dc.contributor.author
MacQueen, Rowan W.
dc.contributor.author
Lips, Klaus
dc.contributor.author
Aldahhak, Hazem
dc.contributor.author
Schmidt, Wolf Gero
dc.contributor.author
Gerstmann, Uwe
dc.date.accessioned
2021-03-25T11:14:19Z
dc.date.available
2021-03-25T11:14:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30019
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29761
dc.description.abstract
Inorganic–organic interfaces are important for enhancing the power conversion efficiency of silicon-based solar cells through singlet exciton fission (SF). We elucidated the structure of the first monolayers of tetracene (Tc), an SF molecule, on hydrogen-passivated Si(111) [H–Si(111)] and hydrogenated amorphous Si (a-Si:H) by combining near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) experiments with density functional theory (DFT) calculations. For samples grown at or below substrate temperatures of 265 K, the resulting ultrathin Tc films are dominated by almost upright-standing molecules. The molecular arrangement is very similar to the Tc bulk phase, with only a slightly higher average angle between the conjugated molecular plane normal and the surface normal (α) around 77°. Judging from carbon K-edge X-ray absorption spectra, the orientation of the Tc molecules are almost identical when grown on H–Si(111) and a-Si:H substrates as well as for (sub)mono- to several-monolayer coverages. Annealing to room temperature, however, changes the film structure toward a smaller α of about 63°. A detailed DFT-assisted analysis suggests that this structural transition is correlated with a lower packing density and requires a well-chosen amount of thermal energy. Therefore, we attribute the resulting structure to a distinct monolayer configuration that features less inclined, but still well-ordered molecules. The larger overlap with the substrate wave functions makes this arrangement attractive for an optimized interfacial electron transfer in SF-assisted silicon solar cells.
en
dc.format.extent
24 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
X-ray absorption near edge spectroscopy
en
dc.subject
Molecular structure
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Tetracene Ultrathin Film Growth on Hydrogen-Passivated Silicon
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
80403
dcterms.bibliographicCitation.doi
10.1021/acs.langmuir.0c01154
dcterms.bibliographicCitation.journaltitle
Langmuir
dcterms.bibliographicCitation.number
31
dcterms.bibliographicCitation.originalpublishername
ACS Publ.
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.pagestart
9099
dcterms.bibliographicCitation.pageend
9113
dcterms.bibliographicCitation.volume
36
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1021/acs.langmuir.0c01154
dcterms.rightsHolder.url
https://publish.acs.org/publish/author_guidelines?coden=jacsat#prior_publication_policy
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
0743-7463