Offshore finance allows foreign banks to create US dollars under the laws of an offshore jurisdiction. How and why does this affect international monetary power? Conceptually, I argue that offshore finance bifurcates across borders the shared power of the state and banks to create money, combining the US dollar with mostly English law. Empirically, I demonstrate that more US dollars are created offshore outside US jurisdiction than onshore within it. Offshore finance increases liquidity, at higher risk, and leads to a cross-border entanglement of issuing country, offshore financial centers, borrowers, and global banks. In short, offshore finance changes the power inherent in money. Consequently, international monetary power has become the ability to get access to offshore dollars in combination with the capacity to determine international liquidity and to set, select, or circumvent the related rules. It is constrained by the hierarchically organized social credit relations that money consists of. The international monetary power of the United States has become an instance of indirect rule with global banks having been delegated the prerogative of US dollar creation. As is common with indirect rule, it entails a difficult balancing act between geographical reach and centralization of power.
View lessRadiative transfer simulations (RTS) still face significant challenges in accurately representing the highly complex gas absorption spectra of the Earth’s atmosphere. Line-by-line RTS achieves high accuracy by solving radiative transfer equations for narrow spectral intervals, but at a considerable computational cost. Especially in remote sensing and climate modeling, a trade-off between efficiency and accuracy must be done. k-distribution methods are widespread in the scientific community and offer a way to make this trade-off. k-distribution methods reorder the absorption spectra for a given spectral interval and find appropriate so-called k-bins. In the k-space much less integration points can be used, while maintaining high accuracy. The way to find optimal k-bins differs from method to method and depends on the application. In this paper, we present the flexible and fast k-bin tool. The python based lightweight k-bin tool provides a variety of different k-distribution methods and configuration options. One k-distribution method is the in-house developed k-bin approach. The different setups of the tool can be easily compared, helping to decide which method and configuration is best suited for a given application. We encourage the user of the tool to continue to optimize the k-bin tool and to extend it with new approaches and functionalities.
View lessThis study addresses a fundamental question in surface science: the adsorption of halogens on metal surfaces. Using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (XPS), temperature-programmed XPS, low-energy electron diffraction (LEED) and density functional theory (DFT) calculations, we investigated the adsorption and thermal stability of bromine on Rh(111) in detail. The adsorption of elemental bromine on Rh(111) at 170 K was followed in situ by XPS in the Br 3d region, revealing two individual, coverage-dependent species, which we assign to fcc hollow- and bridge-bound atomic bromine. In addition, we find a significant shift in binding energy upon increasing coverage due to adsorbate-adsorbate interactions. Subsequent heating shows a high thermal stability of bromine on Rh(111) up to above 1000 K, indicating strong covalent bonding. To complement the XPS data, LEED was used to study the long-range order of bromine on Rh(111): we observe a (√3×√3)R30° structure for low coverages (≤0.33 ML) and a star-shaped compression structure for higher coverages (0.33–0.43 ML). Combining LEED and DFT calculations, we were able to visualize bromine adsorption on Rh(111) in real space for varying coverages.
View lessBackground
Canine mammary tumours (CMT) are among the most common types of tumours in female dogs. Diagnosis currently requires invasive tissue biopsies and histological analysis. Tumour cells shed extracellular vesicles (EVs) containing RNAs and proteins with potential for liquid biopsy diagnostics. We aimed to identify CMT subtype-specific proteome profiles by comparing the proteomes of EVs isolated from epithelial cell lines derived from morphologically normal canine mammary tissue, adenomas, and carcinomas.
Methods
Whole-cell protein lysates (WCLs) and EV-lysates were obtained from five canine mammary cell lines: MTH53A (non-neoplastic); ZMTH3 (adenoma); MTH52C (simple carcinoma); 1305, DT1406TB (complex carcinoma); and their proteins identified by LC-MS/MS analyses. Gene Ontology analysis was performed on differentially abundant proteins from each group to identify up- and down-regulated biological processes. To establish CMT subtype-specific proteomic profiles, weighted gene correlation network analysis (WGCNA) was carried out.
Results
WCL and EVs displayed distinct protein abundance signatures while still showing the same increase in adhesion, migration, and motility-related proteins in carcinoma-derived cell lines, and of RNA processing and RNA splicing factors in the adenoma cell line. WGCNA identified CMT stage-specific co-abundant EV proteins, allowing the identification of adenoma and carcinoma EV signatures not seen in WCLs.
Conclusions
EVs from CMT cell lines exhibit distinct protein profiles reflecting malignancy state, allowing us to identify potential biomarkers for canine mammary carcinomas, such as biglycan. Our dataset could therefore potentially serve as a basis for the development of a less invasive clinical diagnostic tool for the characterisation of CMT.
View lessRecent findings on chimpanzee infants’ gestural development show that they use some gesture types flexibly and adjust them depending on their interaction partner and social context, suggesting that gestural communication is partly learnt and partly genetically determined. However, how gesture types are shaped by social and demographic factors remains unclear. We addressed this question by focusing on gesture type morphology and conducted a fined-grained analysis of gestural form during intraspecific social-play interactions in two captive groups of Western lowland gorillas (Gorilla gorilla gorilla). We focused on the most frequent gesture types (beat chest, slap body, slap ground and touch body) produced by subadults (infants, juveniles and adolescents). We considered twelve morphological gesture characteristics (e.g., horizontal and vertical hand trajectories, fingers flexion and spread). Our multifactorial investigation shows that morphological characteristics of distinct gesture types can be shaped by social factors, namely signaller’s sociodemographic characteristics (group and kinship), signaller’s behavioural characteristics (body posture) and context-related characteristics (recipient’s sex, attentional state and position in the signaller’s visual field). We nurtured the lively debate concerning gesture origins by revealing the existence of “accents” in non-verbal communication and the highly variable adjustment of gestural form to different conspecifics and interactional characteristics, which supports the revised social negotiation hypothesis.
View lessWhile plant anti-herbivore defenses of the annual species Arabidopsis thaliana were shown to be primable by Pieris brassicae eggs, the primability of the phylogenetically closely related perennial Arabidopsis lyrata has not yet been investigated. Previous studies revealed that closely related wild Brassicaceae plant species, the annual Brassica nigra and the perennial B. oleracea, exhibit an egg-primable defense trait, even though they have different life spans. Here, we tested whether P. brassicae eggs prime anti-herbivore defenses of the perennial A. lyrata. We exposed A. lyrata to P. brassicae eggs and larval feeding and assessed their primability by (i) determining the biomass of P. brassicae larvae after feeding on plants with and without prior P. brassicae egg deposition and (ii) investigating the plant transcriptomic response after egg deposition and/or larval feeding. For comparison, these studies were also conducted with A. thaliana. Consistent with previous findings, A. thaliana’s response to prior P. brassicae egg deposition negatively affected conspecific larvae feeding upon A. thaliana. However, this was not observed in A. lyrata. Arabidopsis thaliana responded to P. brassicae eggs with strong transcriptional reprogramming, whereas A. lyrata responses to eggs were negligible. In response to larval feeding, A. lyrata exhibited a greater transcriptome change compared to A. thaliana. Among the strongly feeding-induced A. lyrata genes were those that are egg-primed in feeding-induced A. thaliana, i.e., CAX3, PR1, PR5, and PDF1.4. These results suggest that A. lyrata has evolved a robust feeding response that is independent from prior egg exposure.
View lessComplexation of the green bismuthinidene (RBi) with two equivalents of a highly fluorinated aryl iodide at low temperature allows the crystallographic identification of an unstable red species that can be regarded as an intermediate in an overall Bi(I) → Bi(III) oxidation process. Both C–I bonds are orientated toward the filled 6p orbital of bismuth (Bi–I distances 3.44–3.52 Å), leading to an elongation of the C–I bonds by 0.05 and 0.07 Å. Density functional theory (DFT) calculations confirm that the Bi(I) center is indeed acting as an electron donor, establishing two strong and directional halogen bonds. The color change from green to red upon halogen bond formation is a consequence of the energetic stabilization of a Bi(I) lone pair by interactions with the sigma-holes of the halogen bond donors. Overall, this study presents the first structural proof of bismuth, and more generally of heavy organopnictogen(I) compounds, acting as halogen bond acceptors.
View lessThe removal of organic solvents during the preparation of biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microparticles by an O/W- solvent extraction/evaporation process was investigated and controlled by diafiltration. Emulsification and steady replacement of the aqueous phase were performed in parallel in a single-vessel setup. During the process, the solidification of the dispersed phase (drug:PLGA:solvent droplets) into microparticles was monitored with video-microscopy and focused beam reflectance measurement (FBRM) and the residual solvent content was analyzed with headspace gas chromatography (organic solvent) and coulometric Karl-Fischer titration (water). Microparticles containing dexamethasone or risperidone were characterized with regard to particle size, morphology, encapsulation efficiency and in-vitro release. Diafiltration-accelerated solvent extraction shortened the process time by accelerating solidification of dispersed phase but reduced the residual dichloromethane content only in combination with increased temperature. Increasing the diafiltration rate increased particle size, porosity, and the encapsulation efficiency of risperidone. The latter effect was particularly evident with increasing lipophilicity of PLGA. A slower and more uniform solidification of end-capped and increased lactide content PLGA grade was identified as the reason for an increased drug leaching. Accelerated solvent extraction by diafiltration did not affect the in-vitro release of risperidone from different PLGA grades. The initial burst release of dexamethasone was increased by diafiltration when encapsulated in concentrations above the percolation threshold. Both porosity and burst release could be reduced by increasing the process temperature during diafiltration. Residual water content was established as an indicator for porosity and correlated with the burst release of dexamethasone.
View lessThe objective of this study was to investigate the use of sucrose particles as a porogen for preparing porous poly (lactide-co-glycolide) (PLGA) films containing dexamethasone by solvent casting technique to modulate PLGA degradation and drug release. Increasing the sucrose content up to 30 % decreased PLGA degradation and extended the drug release duration, a further increase to more than 60 % shortened the release duration. Sucrose created cavities and increased the internal pore surface area for the exchange of degraded acidic oligomers and monomers. This process decreased the autocatalysis within the PLGA matrix, resulting in slower drug release at lower sucrose content. At higher sucrose content, the interconnectivity of the PLGA matrix increased, accelerating the drug release of the entrapped drug. Decreasing the particle size of sucrose has a similar impact on PLGA degradation and drug release as increasing sucrose content. Smaller sucrose particles formed more cavities and a larger overall acidic exchange surface areas. Only 20 % nanosized sucrose resulted in a quasi-linear release profile with interconnected sucrose particles, while 60 % micronized or 100 % non-micronized sucrose particles were necessary to achieve the same effect. In conclusion, modifying the content and particle size of sucrose effectively altered PLGA degradation and drug release, with nanosized sucrose being the most effective porogen. The data obtained with PLGA films could be potentially applied to other PLGA drug delivery systems such as microparticles or implants.
View lessThe paper explores the verbal expression of events of change in Bulgarian, a Slavic language with a uniquely complex verbal system involving triplets of imperfective, perfective and secondary imperfective verbs and aspectual tenses like Aorist and Imperfect. It starts from the observation that English predicates involving events of change generally correspond to Bulgarian triplets of lexically related but aspectually differentiated verbs. It addresses this asymmetry by investigating the properties of the events in the denotation of the triplet members in terms of Rothstein’s (2004) aspectual features [±stage] and [±change]. The paper provides evidence for a systematic mapping between the aspectual properties of the triplet members and Rothstein’s event types and proposes an analysis of the event structure of the triplet members. The findings support both the assumption of independent event types denoted by verbal predicates and the notion of telicity as a VP-level phenomenon, and provide evidence for a strategy of expressing aspectual distinctions in which aspectual properties are not directly tied to the roots of verbal predicates but are partly morphologically and partly lexically encoded.
View lessMarek’s disease virus (MDV) vaccines were the first vaccines that protected against cancer. The avirulent turkey herpesvirus (HVT) was widely employed and protected billions of chickens from a deadly MDV infection. It is also among the most common vaccine vectors providing protection against a plethora of pathogens. HVT establishes latency in T-cells, allowing the vaccine virus to persist in the host for life. Intriguingly, the HVT genome contains telomeric repeat arrays (TMRs) at both ends; however, their role in the HVT life cycle remains elusive. We have previously shown that similar TMRs in the MDV genome facilitate its integration into host telomeres, which ensures efficient maintenance of the virus genome during latency and tumorigenesis. In this study, we investigated the role of the TMRs in HVT genome integration, latency, and reactivation in vitro and in vivo. Additionally, we examined HVT infection of feather follicles. We generated an HVT mutant lacking both TMRs (vΔTMR) that efficiently replicated in cell culture. We could demonstrate that wild type HVT integrates at the ends of chromosomes containing the telomeres in T-cells, while integration was severely impaired in the absence of the TMRs. To assess the role of TMRs in vivo, we infected one-day-old chickens with HVT or vΔTMR. vΔTMR loads were significantly reduced in the blood and hardly any virus was transported to the feather follicle epithelium where the virus is commonly shed. Strikingly, latency in the spleen and reactivation of the virus were severely impaired in the absence of the TMRs, indicating that the TMRs are crucial for the establishment of latency and reactivation of HVT. Our findings revealed that the TMRs facilitate integration of the HVT genome into host chromosomes, which ensures efficient persistence in the host, reactivation, and transport of the virus to the skin.
View lessPancreatic cancer is one of the deadliest cancers globally, with limited success from existing therapies, including chemotherapies and immunotherapies like checkpoint inhibitors for patients with advanced pancreatic ductal adenocarcinoma (PDAC). A promising new approach is the use of oncolytic viruses (OV), a form of immunotherapy that has been demonstrated clinical effectiveness in various cancers. Here we investigated the potential of the oncolytic coxsackievirus B3 strain (CVB3) PD-H as a new treatment for pancreatic cancer. In vitro, PD-H exhibited robust replication, as measured by plaque assays, and potent lytic activity, as assessed by XTT assays, in most pancreatic tumor cell lines, outperforming two other coxsackievirus strains tested, H3N-375/1TS and CVA21. Thus, H3N-375/1TS showed efficient replication and lytic efficiency in distinctly fewer tumor cell lines, while most tumor cells were resistant to CVA21. The oncolytic efficiency of the three OV largely correlated with mRNA expression levels of viral receptors and their ability to induce apoptosis, as measured by cleaved caspase 3/7 activity in the tumor cells. In a syngeneic mouse model with subcutaneous pancreatic tumors, intratumoral administration of PD-H significantly inhibited tumor growth but did not completely stop tumor progression. Importantly, no virus-related side effects were observed. Although pancreatic tumors respond to PD-H treatment, its therapeutic efficacy is limited. Combining PD-H with other treatments, such as those aiming at reducing the desmoplastic stroma which impedes viral infection and spread within the tumor, may enhance its efficacy.
View lessTo effectively mitigate anthropogenic air pollution, it is imperative to implement strategies aimed at reducing emissions from traffic-related sources. Achieving this objective can be facilitated by employing modeling techniques to elucidate the interplay between environmental impacts and traffic activities. This paper highlights the importance of combining traffic emission models with high-resolution turbulence and dispersion models in urban areas at street canyon level and presents the development and implementation of an interface between the mesoscopic traffic and emission model MATSim and PALM-4U, which is a set of urban climate application modules within the PALM model system. The proposed coupling mechanism converts MATSim output emissions into input emission flows for the PALM-4U chemistry module, which requires translating between the differing data models of both modeling systems. In an idealized case study, focusing on Berlin, the model successfully identified “hot spots” of pollutant concentrations near high-traffic roads and during rush hours. Results show good agreement between modeled and measured NOx concentrations, demonstrating the model’s capacity to accurately capture urban pollutant dispersion. Additionally, the presented coupling enables detailed assessments of traffic emissions but also offers potential for evaluating the effectiveness of traffic management policies and their impact on air quality in urban areas.
View lessBackground: The sand flea, Tunga penetrans, is the cause of a severely neglected parasitic skin disease (tungiasis) in the tropics and has received little attention from entomologists to understand its transmission ecology. Like all fleas, T. penetrans has environmental off-host stages presenting a constant source of reinfection. We adapted the Berlese-Tullgren funnel method using heat from light bulbs to extract off-host stages from soil samples to identify the major development sites within rural households in Kenya and Uganda.
Methods and findings: Simple, low-cost units of multiple funnels were designed to allow the extraction of >60 soil samples in parallel. We calibrated the method by investigating the impact of different bulb wattage and extraction time on resulting abundance and quality of off-host stages. A cross-sectional field survey was conducted in 49 tungiasis affected households. A total of 238 soil samples from indoor and outdoor living spaces were collected and extracted. Associations between environmental factors, household member infection status and the presence and abundance of off-host stages in the soil samples were explored using generalized models. The impact of heat (bulb wattage) and time (hours) on the efficiency of extraction was demonstrated and, through a stepwise approach, standard operating conditions defined that consistently resulted in the recovery of 75% (95% CI 63–85%) of all present off-host stages from any given soil sample. To extract off-host stages alive, potentially for consecutive laboratory bioassays, a low wattage (15–25 W) and short extraction time (4 h) will be required. The odds of finding off-host stages in indoor samples were 3.7-fold higher than in outdoor samples (95% CI 1.8–7.7). For every one larva outdoors, four (95% CI 1.3–12.7) larvae were found indoors. We collected 67% of all off-host specimen from indoor sleeping locations and the presence of off-host stages in these locations was strongly associated with an infected person sleeping in the room (OR 10.5 95% CI 3.6–28.4).
Conclusion: The indoor sleeping areas are the transmission hotspots for tungiasis in rural homes in Kenya and Uganda and can be targeted for disease control and prevention measures. The soil extraction methods can be used as a simple tool for monitoring direct impact of such interventions.
View lessIntroduction: Angiogenic behaviour has been shown as highly versatile among Endothelial cells (ECs) causing problems of in vitro assays of angiogenesis considering their reproducibility. It is indispensable to investigate influencing factors of the angiogenic potency of ECs.
Objective: The present study aimed to analyse the impact of knocking down triosephosphate isomerase (TPI) on in vitro angiogenesis and simultaneously on vimentin (VIM) and adenosylmethionine synthetase isoform type 2 (MAT2A) expression. Furthermore, native expression profiles of TPI, VIM and MAT2A in the course of angiogenesis in vitro were examined.
Methods: Two batches of human dermal microvascular ECs were cultivated over 50 days and stimulated to undergo angiogenesis. A shRNA-mediated knockdown of TPI was performed. During cultivation, time-dependant morphological changes were detected and applied for EC-staging as prerequisite for quantifying in vitro angiogenesis. Additionally, mRNA and protein levels of all proteins were monitored.
Results: Opposed to native cells, knockdown cells were not able to enter late stages of angiogenesis and primarily displayed a downregulation of VIM and an uprise in MAT2A expression. Native cells increased their TPI expression and decreased their VIM expression during the course of angiogenesis in vitro. For MAT2A, highest expression was observed to be in the beginning and at the end of angiogenesis.
Conclusion: Knocking down TPI provoked expressional changes in VIM and MAT2A and a deceleration of in vitro angiogenesis, indicating that TPI represents an angiogenic protein. Native expression profiles lead to the assumption of VIM being predominantly relevant in beginning stages, MAT2A in beginning and late stages and TPI during the whole course of angiogenesis in vitro.
View lessAnnual maxima of daily precipitation sums can be typically described well with a stationary generalized extreme value (GEV) distribution. In many regions of the world, such a description does also work well for monthly maxima for a given month of the year. However, the description of seasonal and interannual variations requires the use of non-stationary models. Therefore, in this paper we propose a non-stationary modeling strategy applied to long time series from rain gauges in Germany. Seasonal variations in the GEV parameters are modeled with a series of harmonic functions and interannual variations with higher-order orthogonal polynomials. By including interactions between the terms, we allow for the seasonal cycle to change with time. Frequently, the shape parameter ξ of the GEV is estimated as a constant value also in otherwise instationary models. Here, we allow for seasonal–interannual variations and find that this is beneficial. A suitable model for each time series is selected with a stepwise forward regression method using the Bayesian information criterion (BIC). A cross-validated verification with the quantile skill score (QSS) and its decomposition reveals a performance gain of seasonally–interannually varying return levels with respect to a model allowing for seasonal variations only. Some evidence can be found that the impact of climate change on extreme precipitation in Germany can be detected, whereas changes are regionally very different. In general, an increase in return levels is more prevalent than a decrease. The median of the extreme precipitation distribution (2-year return level) generally increases during spring and autumn and is shifted to later times in the year; heavy precipitation (100-year return level) rises mainly in summer and occurs earlier in the year.
View lessOrganizations, as central actors in societal structure, undergo significant transformations due to the impact of digitalization, often resulting in disruptive changes. Consequently, organizations increasingly view digitalization as an ongoing process of negotiation, which has led to the emergence of new operational modes and organizational norms. In this context, the interaction between organizations and digital technologies is characterized by recursive dynamics, which blur conventional boundaries. This presents a challenge in defining the distinct domains of the digital and the organizational within the framework of recursivity. This article draws upon new materialism and agential realism to propose an ontological-relational approach to understanding organizational digitality. This approach suggests a reconceptualization of organizational digitality as a mechanism that generates relational entities, thereby reshaping their inherent meanings. By transcending traditional boundaries between organizations and digital, this perspective provides a nuanced understanding of digital phenomena within organizational contexts.
View lessWe analyze connections between two low rank modeling approaches from the last decade for treating dynamical data. The first one is the coherence problem (or coherent set approach), where groups of states are sought that evolve under the action of a stochastic transition matrix in a way maximally distinguishable from other groups. The second one is a low rank factorization approach for stochastic matrices, called direct Bayesian model reduction (DBMR), which estimates the low rank factors directly from observed data. We show that DBMR results in a low rank model that is a projection of the full model, and exploit this insight to infer bounds on a quantitative measure of coherence within the reduced model. Both approaches can be formulated as optimization problems, and we also prove a bound between their respective objectives. On a broader scope, this work relates the two classical loss functions of nonnegative matrix factorization, namely the Frobenius norm and the generalized Kullback–Leibler divergence, and suggests new links between likelihood-based and projection-based estimation of probabilistic models.
View lessSalt structures and their surroundings can play an important role in the energy transition related to a number of storage and energy applications. Thus, it is important to assess the current and future stability of salt bodies in their specific geological settings. We investigate the influence of ice sheet loading and unloading on subsurface salt structures using physical models based on the geological setting of northern Germany, which was repeatedly glaciated by the Scandinavian Ice Sheet during the Pleistocene. Apparent spatial correlations between subsurface salt structures in northern Germany and Weichselian ice marginal positions have been observed before, and the topic is a matter of ongoing debate. Recently described geomorphological features – termed surface cracks – have been interpreted as a direct result of ice-sheet-induced salt movement resulting in surface expansion. The spatial clustering and orientation of these surface cracks has not been well understood so far, owing to only a limited number of available studies dealing with the related salt tectonic processes. Thus, we use four increasingly complex physical models to test the basic loading and unloading principle, to analyze flow patterns within the salt source layer and within salt structures, and to examine the influence of the shape and orientation of the salt structures with respect to a lobate ice margin in a three-dimensional laboratory environment. Three salt structures of the northern German basin were selected as examples that were replicated in the laboratory. Salt structures were initially grown by differential loading and buried before loading. The ice load was simulated by a weight that was temporarily placed on a portion of the surface of the models. The replicated salt structures were either completely covered by the load, partly covered by the load, or situated outside the load extent. In all scenarios, a dynamic response of the system to the load could be observed; while the load was applied, the structures outside the load margin started to rise, with a decreasing tendency with distance from the load margin, and, at the same time, the structures under the load subsided. After the load was removed, a flow reversal set in, and previously loaded structures started to rise, whereas the structures outside the former load margin began to subside. The vertical displacements during the unloading stage were not as strong as during the load stage, and thus the system did not return to its pre-glaciation status. Modeled salt domes that were located at distance from the load margin showed a comparably weak reaction. A more extreme response was shown by modeled salt pillows whose margins varied from sub-parallel to sub-perpendicular to the load margin and were partly covered by the load. Under these conditions, the structures showed a strong reaction in terms of strain and vertical displacement. The observed strain patterns at the surface were influenced by the shape of the load margin and the shape of the salt structure at depth, resulting in complex deformation patterns. These physical modeling results provide more evidence for a possible interplay between ice sheets and subsurface salt structures, highlighting the significance of three-dimensional effects in dynamic geological settings. Our results lead to a better understanding of spatial patterns of the surface cracks that were mapped at the surface above salt structures and offer further room for interpretation of the influence of salt movements on the present-day landscape.
View less