dc.contributor.author
Lecocq, F.
dc.contributor.author
Ranzani, L.
dc.contributor.author
Peterson, G.A.
dc.contributor.author
Cicak, K.
dc.contributor.author
Metelmann, Anja
dc.contributor.author
Kotler, S.
dc.contributor.author
Simmonds, R.W.
dc.contributor.author
Teufel, J.D.
dc.contributor.author
Aumentado, J.
dc.date.accessioned
2021-03-19T11:41:37Z
dc.date.available
2021-03-19T11:41:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29992
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29734
dc.description.abstract
The measurement of a quantum system is often performed by encoding its state in a single observable of a light field. The measurement efficiency of this observable can be reduced by loss or excess noise on the way to the detector. Even a quantum-limited detector that simultaneously measures a second noncommuting observable would double the output noise, therefore limiting the efficiency to 50%. At microwave frequencies, an ideal measurement efficiency can be achieved by noiselessly amplifying the information-carrying quadrature of the light field but this has remained an experimental challenge. Indeed, while state-of-the-art Josephson-junction-based parametric amplifiers can perform an ideal single-quadrature measurement, they require lossy ferrite circulators in the signal path, drastically decreasing the overall efficiency. In this paper, we present a nonreciprocal parametric amplifier that combines single-quadrature measurement and directionality without the use of strong external magnetic fields. We extract a measurement efficiency of 62+17−9% that exceeds the quantum limit and that is not limited by fundamental factors. The amplifier can be readily integrated with superconducting devices, creating a path for ideal measurements of quantum bits and mechanical oscillators.
en
dc.format.extent
13 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Optical parametric oscillators & amplifiers
en
dc.subject
Quantum computation
en
dc.subject
Quantum information processing with continuous variables
en
dc.subject
Quantum information with solid state qubits
en
dc.subject
Quantum metrology
en
dc.subject
Quantum sensing
en
dc.subject
Superconducting quantum optics
en
dc.subject
Microwave techniques
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
SEP_Microwave Measurement beyond the Quantum Limit with a Nonreciprocal Amplifier
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
80359
dcterms.bibliographicCitation.articlenumber
044005
dcterms.bibliographicCitation.doi
10.1103/PhysRevApplied.13.044005
dcterms.bibliographicCitation.journaltitle
Physical Review Applied
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, Md. [u.a.]
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevApplied.13.044005
dcterms.rightsHolder.url
https://journals.aps.org/copyrightFAQ.html#free
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2331-7019