dc.contributor.author
Meinert, Markus
dc.contributor.author
Gliniors, Björn
dc.contributor.author
Gückstock, Oliver Philipp
dc.contributor.author
Seifert, Tom S.
dc.contributor.author
Liensberger, Lukas
dc.contributor.author
Weiler, Mathias
dc.contributor.author
Wimmer, Sebastian
dc.contributor.author
Ebert, Hubert
dc.contributor.author
Kampfrath, Tobias
dc.date.accessioned
2021-03-18T13:26:54Z
dc.date.available
2021-03-18T13:26:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29979
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29721
dc.description.abstract
The spin Hall effect in heavy-metal thin films is routinely used to convert charge currents into transverse spin currents and can be used to exert torque on adjacent ferromagnets. Conversely, the inverse spin Hall effect is frequently used to detect spin currents by charge currents in spintronic devices up to the terahertz frequency range. Numerous techniques to measure the spin Hall effect or its inverse have been introduced, most of which require extensive sample preparation by multistep lithography. To enable rapid screening of materials in terms of charge-to-spin conversion, suitable high-throughput methods for measuring the spin Hall angle are required. Here we compare two lithography-free techniques, terahertz emission spectroscopy and broadband ferromagnetic resonance, with standard harmonic Hall measurements and theoretical predictions using the binary-alloy series AuxPt1−x as a benchmark system. Despite their being highly complementary, we find that all three techniques yield a spin Hall angle with approximately the same x dependence, which is also consistent with first-principles calculations. Quantitative discrepancies are discussed in terms of magnetization orientation and interfacial spin-memory loss.
en
dc.format.extent
9 S. (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Spin Hall effect
en
dc.subject
Spin generation
en
dc.subject
Spin-orbit coupling
en
dc.subject
Ferromagnetic resonance
en
dc.subject
Terahertz spectroscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
High-Throughput Techniques for Measuring the Spin Hall Effect
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
80242
dcterms.bibliographicCitation.articlenumber
064011
dcterms.bibliographicCitation.doi
10.1103/PhysRevApplied.14.064011
dcterms.bibliographicCitation.journaltitle
Physical Review Applied
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, Md. [u.a.]
dcterms.bibliographicCitation.volume
14
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevApplied.14.064011
dcterms.rightsHolder.url
https://journals.aps.org/copyrightFAQ.html#free
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2331-7019