dc.contributor.author
Husic, Brooke Elena
dc.contributor.author
Charron, Nicholas E.
dc.contributor.author
Lemm, Dominik
dc.contributor.author
Wang, Jiang
dc.contributor.author
Pérez, Adrià
dc.contributor.author
Majewski, Maciej
dc.contributor.author
Krämer, Andreas
dc.contributor.author
Chen, Yaoyi
dc.contributor.author
Olsson, Simon
dc.contributor.author
de Fabritiis, Gianni
dc.contributor.author
Noe, Frank
dc.contributor.author
Clementi, Cecilia
dc.date.accessioned
2021-03-17T10:02:24Z
dc.date.available
2021-03-17T10:02:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29964
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29706
dc.description.abstract
Coarse graining enables the investigation of molecular dynamics for larger systems and at longer timescales than is possible at an atomic resolution. However, a coarse graining model must be formulated such that the conclusions we draw from it are consistent with the conclusions we would draw from a model at a finer level of detail. It has been proved that a force matching scheme defines a thermodynamically consistent coarse-grained model for an atomistic system in the variational limit. Wang et al. [ACS Cent. Sci. 5, 755 (2019)] demonstrated that the existence of such a variational limit enables the use of a supervised machine learning framework to generate a coarse-grained force field, which can then be used for simulation in the coarse-grained space. Their framework, however, requires the manual input of molecular features to machine learn the force field. In the present contribution, we build upon the advance of Wang et al. and introduce a hybrid architecture for the machine learning of coarse-grained force fields that learn their own features via a subnetwork that leverages continuous filter convolutions on a graph neural network architecture. We demonstrate that this framework succeeds at reproducing the thermodynamics for small biomolecular systems. Since the learned molecular representations are inherently transferable, the architecture presented here sets the stage for the development of machine-learned, coarse-grained force fields that are transferable across molecular systems.
en
dc.format.extent
16 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Artificial neural networks
en
dc.subject
Molecular dynamics
en
dc.subject
Machine learning
en
dc.subject
Computer simulation
en
dc.subject
Coarse-grain model
en
dc.subject
Coarse-grained force fields
en
dc.subject
Langevin dynamics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::000 Informatik, Informationswissenschaft, allgemeine Werke
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Coarse graining molecular dynamics with graph neural networks
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
80494
dcterms.bibliographicCitation.doi
10.1063/5.0026133
dcterms.bibliographicCitation.journaltitle
The journal of chemical physics
dcterms.bibliographicCitation.number
19
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics
dcterms.bibliographicCitation.originalpublisherplace
Melville, NY
dcterms.bibliographicCitation.pagestart
Artikel 194101 (16 Seiten)
dcterms.bibliographicCitation.volume
153
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1063/5.0026133
refubium.affiliation
Physik
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.affiliation.other
Institut für Mathematik
refubium.note.author
Open Access in National- und Allianzlizenz.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
0021-9606