dc.contributor.author
Smidt, Tess E.
dc.contributor.author
Geiger, Mario
dc.contributor.author
Miller, Benjamin Kurt
dc.date.accessioned
2021-03-15T07:14:44Z
dc.date.available
2021-03-15T07:14:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29933
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29675
dc.description.abstract
Curie's principle states that “when effects show certain asymmetry, this asymmetry must be found in the causes that gave rise to them.” We demonstrate that symmetry equivariant neural networks uphold Curie's principle and can be used to articulate many symmetry-relevant scientific questions as simple optimization problems. We prove these properties mathematically and demonstrate them numerically by training a Euclidean symmetry equivariant neural network to learn symmetry breaking input to deform a square into a rectangle and to generate octahedra tilting patterns in perovskites.
en
dc.format.extent
6 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
broken symmetry
en
dc.subject
interdisciplinary physics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Finding symmetry breaking order parameters with Euclidean neural networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
L012002
dcterms.bibliographicCitation.doi
10.1103/PhysRevResearch.3.L012002
dcterms.bibliographicCitation.journaltitle
Physical Review Research
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevResearch.3.L012002
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2643-1564
refubium.resourceType.provider
WoS-Alert