dc.contributor.author
Chernev, Petko
dc.contributor.author
Fischer, Sophie
dc.contributor.author
Hoffmann, Jutta
dc.contributor.author
Oliver, Nicholas
dc.contributor.author
Assunção, Ricardo
dc.contributor.author
Yu, Boram
dc.contributor.author
Burnap, Robert L.
dc.contributor.author
Zaharieva, Ivelina
dc.contributor.author
Nürnberg, Dennis
dc.contributor.author
Haumann, Michael
dc.contributor.author
Dau, Holger
dc.date.accessioned
2021-03-16T11:05:06Z
dc.date.available
2021-03-16T11:05:06Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29905
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29647
dc.description.abstract
Water oxidation and concomitant dioxygen formation by the manganese-calcium cluster of oxygenic photosynthesis has shaped the biosphere, atmosphere, and geosphere. It has been hypothesized that at an early stage of evolution, before photosynthetic water oxidation became prominent, light-driven formation of manganese oxides from dissolved Mn(2+) ions may have played a key role in bioenergetics and possibly facilitated early geological manganese deposits. Here we report the biochemical evidence for the ability of photosystems to form extended manganese oxide particles. The photochemical redox processes in spinach photosystem-II particles devoid of the manganese-calcium cluster are tracked by visible-light and X-ray spectroscopy. Oxidation of dissolved manganese ions results in high-valent Mn(III,IV)-oxide nanoparticles of the birnessite type bound to photosystem II, with 50-100 manganese ions per photosystem. Having shown that even today’s photosystem II can form birnessite-type oxide particles efficiently, we propose an evolutionary scenario, which involves manganese-oxide production by ancestral photosystems, later followed by down-sizing of protein-bound manganese-oxide nanoparticles to finally yield today’s catalyst of photosynthetic water oxidation.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Biogeochemistry
en
dc.subject
Molecular evolution
en
dc.subject
Chemical origin of life Photosystem II
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Light-driven formation of manganese oxide by today’s photosystem II supports evolutionarily ancient manganese-oxidizing photosynthesis
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
79694
dcterms.bibliographicCitation.articlenumber
6110
dcterms.bibliographicCitation.doi
10.1038/s41467-020-19852-0
dcterms.bibliographicCitation.journaltitle
Nature communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.originalpublisherplace
London
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1038/s41467-020-19852-0
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723