dc.contributor.author
Harats, Moshe Gedalia
dc.contributor.author
Bolotin, Kirill
dc.date.accessioned
2021-03-12T13:23:50Z
dc.date.available
2021-03-12T13:23:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29890
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29632
dc.description.abstract
Photoexcited electron-hole pairs (excitons) in transition metal dichalcogenides (TMDC) experience an effective force when these materials are non-uniformly strained. In the case of strain produced by a sharp tip pressing at the center of a suspended TMDC membrane, the excitons are transported to the point of the highest strain at the center of the membrane. This effect, exciton funneling, can be used to increase photoconversion efficiency in TMDC, to explore exciton transport and to study correlated states of excitons arising at their high densities. Here, we analyze the limits of funneling efficiency in realistic device geometries. The funneling efficiency in realistic monolayer TMDCs is found to be low, $ \lt$5% both at room and low temperatures. This results from dominant diffusion at room temperature and short exciton lifetimes at low temperatures. On the other hand, in TMDC heterostructures with long exciton lifetimes the funneling efficiency reaches ~50% at room temperature, as the exciton density reaches thermal equilibrium in the funnel. Finally, we show that Auger recombination limits funneling efficiency for intense illumination sources.
en
dc.format.extent
7 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
strain engineering
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Limits of funneling efficiency in non-uniformly strained 2D semiconductors
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
015010
dcterms.bibliographicCitation.doi
10.1088/2053-1583/abbabf
dcterms.bibliographicCitation.journaltitle
2D Materials
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
IOP Publishing
dcterms.bibliographicCitation.originalpublisherplace
Bristol
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1088/2053-1583/abbabf
dcterms.rightsHolder.url
https://publishingsupport.iopscience.iop.org/preprint-pre-publication-policy/
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.note.author
This is the version of the article before peer review or editing, as submitted by an author to 2D Materials. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2053-1583/abbabf.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2053-1583