dc.contributor.author
Gut, C.
dc.contributor.author
Winkler, K.
dc.contributor.author
Hoelscher-Obermaier, J.
dc.contributor.author
Hofer, S. G.
dc.contributor.author
Moghadas Nia, R.
dc.contributor.author
Walk, Nathan
dc.contributor.author
Steffens, Adrian
dc.contributor.author
Eisert, Jens
dc.contributor.author
Wieczorek, W.
dc.contributor.author
Slater, J. A.
dc.date.accessioned
2021-02-15T13:49:01Z
dc.date.available
2021-02-15T13:49:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29642
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29386
dc.description.abstract
We provide an argument to infer stationary entanglement between light and a mechanical oscillator based on continuous measurement of light only. We propose an experimentally realizable scheme involving an optomechanical cavity driven by a resonant, continuous-wave field operating in the non-sideband-resolved regime. This corresponds to the conventional configuration of an optomechanical position or force sensor. We show analytically that entanglement between the mechanical oscillator and the output field of the optomechanical cavity can be inferred from the measurement of squeezing in (generalized) Einstein-Podolski-Rosen quadratures of suitable temporal modes of the stationary light field. Squeezing can reach levels of up to 50% of noise reduction below shot noise in the limit of large quantum cooperativity. Remarkably, entanglement persists even in the opposite limit of small cooperativity. Viewing the optomechanical device as a position sensor, entanglement between mechanics and light is an instance of object-apparatus entanglement predicted by quantum measurement theory.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Stationary optomechanical entanglement between a mechanical oscillator and its measurement apparatus
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
033244
dcterms.bibliographicCitation.doi
10.1103/PhysRevResearch.2.033244
dcterms.bibliographicCitation.journaltitle
Physical Review Research
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
2
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevResearch.2.033244
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2643-1564
refubium.resourceType.provider
WoS-Alert