dc.contributor.author
Ulrich, Jana
dc.contributor.author
Jurado, Oscar E.
dc.contributor.author
Peter, Madlen
dc.contributor.author
Scheibel, Marc
dc.contributor.author
Rust, Henning W.
dc.date.accessioned
2021-02-12T14:20:17Z
dc.date.available
2021-02-12T14:20:17Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29619
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29363
dc.description.abstract
Given that long time series for temporally highly resolved precipitation observations are rarely available, it is necessary to pool information to obtain reliable estimates of the distribution of extreme precipitation, especially for short durations. In this study, we use a duration-dependent generalized extreme value distribution (d-GEV) with orthogonal polynomials of longitude and latitude as spatial covariates, allowing us to pool information between durations and stations. We determine the polynomial orders with step-wise forward regression and cross-validated likelihood as a model selection criterion. The Wupper River catchment in the West of Germany serves as a case study area. It allows us to estimate return level maps for arbitrary durations, as well as intensity-duration-frequency curves at any location—also ungauged—in the research area. The main focus of the study is evaluating the model performance in detail using the Quantile Skill Index, a measure derived from the popular Quantile Skill Score. We find that the d-GEV with spatial covariates is an improvement for the modeling of rare events. However, the model shows limitations concerning the modeling of short durations d≤30min. For ungauged sites, the model performs on average as good as a generalized extreme value distribution with parameters estimated individually at the gauged stations with observation time series of 30–35 years available.
en
dc.format.extent
21 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
extreme value statistics
en
dc.subject
extreme precipitation
en
dc.subject
subdaily precipitation extremes
en
dc.subject
intensity-duration-frequency curve
en
dc.subject
duration-dependent GEV
en
dc.subject
vector generalized linear model
en
dc.subject
spatial covariates
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Estimating IDF Curves Consistently over Durations with Spatial Covariates
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
3119
dcterms.bibliographicCitation.doi
10.3390/w12113119
dcterms.bibliographicCitation.journaltitle
Water
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.3390/w12113119
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2073-4441