dc.contributor.author
Fedoseeva, Yuliya V.
dc.contributor.author
Lobiak, Egor V.
dc.contributor.author
Shlyakhova, Elena V.
dc.contributor.author
Kovalenko, Konstantin A.
dc.contributor.author
Kuznetsova, Viktoriia R.
dc.contributor.author
Vorfolomeeva, Anna A.
dc.contributor.author
Grebenkina, Mariya A.
dc.contributor.author
Nishchakova, Alina D.
dc.contributor.author
Makarova, Anna A.
dc.contributor.author
Bulusheva, Lyubov G.
dc.contributor.author
Okotrub, Alexander V.
dc.date.accessioned
2021-02-12T13:49:53Z
dc.date.available
2021-02-12T13:49:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29616
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29360
dc.description.abstract
Highly porous nitrogen-doped carbon nanomaterials have distinct advantages in energy storage and conversion technologies. In the present work, hydrothermal treatments in water or ammonia solution were used for modification of mesoporous nitrogen-doped graphitic carbon, synthesized by deposition of acetonitrile vapors on the pyrolysis products of calcium tartrate. Morphology, composition, and textural characteristics of the original and activated materials were studied by transmission electron microscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, infrared spectroscopy, and nitrogen gas adsorption method. Both treatments resulted in a slight increase in specific surface area and volume of micropores and small mesopores due to the etching of carbon surface. Compared to the solely aqueous medium, activation with ammonia led to stronger destruction of the graphitic shells, the formation of larger micropores (1.4 nm vs. 0.6 nm), a higher concentration of carbonyl groups, and the addition of nitrogen-containing groups. The tests of nitrogen-doped carbon materials as electrodes in 1M H2SO4 electrolyte and sodium-ion batteries showed improvement of electrochemical performance after hydrothermal treatments especially when ammonia was used. The activation method developed in this work is hopeful to open up a new route of designing porous nitrogen-doped carbon materials for electrochemical applications.
en
dc.format.extent
19 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
porous nitrogen-doped carbon
en
dc.subject
hydrothermal treatment
en
dc.subject
electrochemical double-layer capacitors
en
dc.subject
sodium-ion batteries
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
Hydrothermal Activation of Porous Nitrogen-Doped Carbon Materials for Electrochemical Capacitors and Sodium-Ion Batteries
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2163
dcterms.bibliographicCitation.doi
10.3390/nano10112163
dcterms.bibliographicCitation.journaltitle
Nanomaterials
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.3390/nano10112163
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie / Physikalische und Theoretische Chemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2079-4991