dc.contributor.author
Soch, Joram
dc.date.accessioned
2021-02-08T15:43:51Z
dc.date.available
2021-02-08T15:43:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29549
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29293
dc.description.abstract
When predicting a certain subject-level variable (e.g., age in years) from measured biological data (e.g., structural MRI scans), the decoding algorithm does not always preserve the distribution of the variable to predict. In such a situation, distributional transformation (DT), i.e., mapping the predicted values to the variable's distribution in the training data, might improve decoding accuracy. Here, we tested the potential of DT within the 2019 Predictive Analytics Competition (PAC) which aimed at predicting chronological age of adult human subjects from structural MRI data. In a low-dimensional setting, i.e., with less features than observations, we applied multiple linear regression, support vector regression and deep neural networks for out-of-sample prediction of subject age. We found that (i) when the number of features is low, no method outperforms linear regression; and (ii) except when using deep regression, distributional transformation increases decoding performance, reducing the mean absolute error (MAE) by about half a year. We conclude that DT can be advantageous when predicting variables that are non-controlled, but have an underlying distribution in healthy or diseased populations.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
chronological age
en
dc.subject
structural MRI
en
dc.subject
machine learning
en
dc.subject
structural neuroimaging
en
dc.subject
distributional transformation
en
dc.subject
continuous variables
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Distributional Transformation Improves Decoding Accuracy When Predicting Chronological Age From Structural MRI
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
604268
dcterms.bibliographicCitation.doi
10.3389/fpsyt.2020.604268
dcterms.bibliographicCitation.journaltitle
Frontiers in Psychiatry
dcterms.bibliographicCitation.originalpublishername
Frontiers Media SA
dcterms.bibliographicCitation.volume
11
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
33363488
dcterms.isPartOf.eissn
1664-0640