dc.contributor.author
Nietner, A.
dc.contributor.author
Vanhecke, B.
dc.contributor.author
Verstraete, F.
dc.contributor.author
Eisert, J.
dc.contributor.author
Vanderstraeten, L.
dc.date.accessioned
2021-01-25T07:44:05Z
dc.date.available
2021-01-25T07:44:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29343
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29089
dc.description.abstract
Tensor network states provide an efficient class of states that faithfully capture strongly correlated quantum models and systems in classical statistical mechanics. While tensor networks can now be seen as becoming standard tools in the description of such complex many-body systems, close to optimal variational principles based on such states are less obvious to come by. In this work, we generalize a recently proposed variational uniform matrix product state algorithm for capturing one-dimensional quantum lattices in the thermodynamic limit, to the study of regular two-dimensional tensor networks with a non-trivial unit cell. A key property of the algorithm is a computational effort that scales linearly rather than exponentially in the size of the unit cell. We demonstrate the performance of our approach on the computation of the classical partition functions of the antiferromagnetic Ising model and interacting dimers on the square lattice, as well as of a quantum doped resonating valence bond state.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
matrix renormalization-group
en
dc.subject
statistical-mechanics
en
dc.subject
exponential decay
en
dc.subject
product states
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Efficient variational contraction of two-dimensional tensor networks with a non-trivial unit cell
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.22331/q-2020-09-21-328
dcterms.bibliographicCitation.journaltitle
Quantum
dcterms.bibliographicCitation.volume
4
dcterms.bibliographicCitation.url
https://doi.org/10.22331/q-2020-09-21-328
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center for Complex Quantum Systems
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2521-327X
refubium.resourceType.provider
WoS-Alert