dc.contributor.author
Ilic, Ivan K.
dc.contributor.author
Tsouka, Alexandra
dc.contributor.author
Perovic, Milena
dc.contributor.author
Hwang, Jinyeon
dc.contributor.author
Heil, Tobias
dc.contributor.author
Loeffler, Felix F.
dc.contributor.author
Oschatz, Martin
dc.contributor.author
Antonietti, Markus
dc.contributor.author
Liedel, Clemens
dc.date.accessioned
2021-02-01T12:31:39Z
dc.date.available
2021-02-01T12:31:39Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29070
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28820
dc.description.abstract
The use of organic materials with reversible redox activity holds enormous potential for next-generation Li-ion energy storage devices. Yet, most candidates are not truly sustainable, i.e., not derived from renewable feedstock or made in benign reactions. Here an attempt is reported to resolve this issue by synthesizing an organic cathode material from tannic acid and microporous carbon derived from biomass. All constituents, including the redox-active material and conductive carbon additive, are made from renewable resources. Using a simple, sustainable fabrication method, a hybrid material is formed. The low cost and ecofriendly material shows outstanding performance with a capacity of 108 mAh g(-1) at 0.1 A g(-1) and low capacity fading, retaining approximately 80% of the maximum capacity after 90 cycles. With approximately 3.4 V versus Li+/Li, the cells also feature one of the highest reversible redox potentials reported for biomolecular cathodes. Finally, the quinone-catecholate redox mechanism responsible for the high capacity of tannic acid is confirmed by electrochemical characterization of a model compound similar to tannic acid but without catecholic groups.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
electrochemistry
en
dc.subject
energy storage
en
dc.subject
redox chemistry
en
dc.subject
sustainability
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Sustainable Cathodes for Lithium‐Ion Energy Storage Devices Based on Tannic Acid—Toward Ecofriendly Energy Storage
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2000206
dcterms.bibliographicCitation.doi
10.1002/adsu.202000206
dcterms.bibliographicCitation.journaltitle
Advanced Sustainable Systems
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adsu.202000206
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2366-7486
refubium.resourceType.provider
WoS-Alert