dc.contributor.author
Klebanov, Ilja
dc.contributor.author
Sikorski, Alexander
dc.contributor.author
Schütte, Christof
dc.contributor.author
Röblitz, Susanna
dc.date.accessioned
2021-12-01T13:02:47Z
dc.date.available
2021-12-01T13:02:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28904
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28653
dc.description.abstract
When dealing with Bayesian inference the choice of the prior often remains a debatable question. Empirical Bayes methods offer a data-driven solution to this problem by estimating the prior itself from an ensemble of data. In the nonparametric case, the maximum likelihood estimate is known to overfit the data, an issue that is commonly tackled by regularization. However, the majority of regularizations are ad hoc choices which lack invariance under reparametrization of the model and result in inconsistent estimates for equivalent models. We introduce a nonparametric, transformation-invariant estimator for the prior distribution. Being defined in terms of the missing information similar to the reference prior, it can be seen as an extension of the latter to the data-driven setting. This implies a natural interpretation as a trade-off between choosing the least informative prior and incorporating the information provided by the data, a symbiosis between the objective and empirical Bayes methodologies.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
nonparametric inference
en
dc.subject
Jeffreys prior
en
dc.subject
maximum penalized likelihood estimator
en
dc.subject
reference prior
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Objective priors in the empirical Bayes framework
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1111/sjos.12485
dcterms.bibliographicCitation.journaltitle
Scandinavian Journal of Statistic
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1212
dcterms.bibliographicCitation.pageend
1233
dcterms.bibliographicCitation.volume
48
dcterms.bibliographicCitation.url
https://doi.org/10.1111/sjos.12485
refubium.affiliation
Mathematik und Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1467-9469
refubium.resourceType.provider
WoS-Alert