dc.contributor.author
Klus, Stefan
dc.contributor.author
Nüske, Feliks
dc.contributor.author
Hamzi, Boumediene
dc.date.accessioned
2020-10-29T15:21:07Z
dc.date.available
2020-10-29T15:21:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28716
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28464
dc.description.abstract
Many dimensionality and model reduction techniques rely on estimating dominant eigenfunctions of associated dynamical operators from data. Important examples include the Koopman operator and its generator, but also the Schrödinger operator. We propose a kernel-based method for the approximation of differential operators in reproducing kernel Hilbert spaces and show how eigenfunctions can be estimated by solving auxiliary matrix eigenvalue problems. The resulting algorithms are applied to molecular dynamics and quantum chemistry examples. Furthermore, we exploit that, under certain conditions, the Schrödinger operator can be transformed into a Kolmogorov backward operator corresponding to a drift-diffusion process and vice versa. This allows us to apply methods developed for the analysis of high-dimensional stochastic differential equations to quantum mechanical systems.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Koopman generator
en
dc.subject
Schrödinger operator
en
dc.subject
reproducing kernel Hilbert space
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Kernel-Based Approximation of the Koopman Generator and Schrödinger Operator
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
722
dcterms.bibliographicCitation.doi
10.3390/e22070722
dcterms.bibliographicCitation.journaltitle
Entropy
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
22
dcterms.bibliographicCitation.url
https://doi.org/10.3390/e22070722
refubium.affiliation
Mathematik und Informatik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1099-4300