dc.contributor.author
Codenotti, Giulia
dc.contributor.author
Spreer, Jonathan
dc.contributor.author
Santos, Francisco
dc.date.accessioned
2020-10-26T13:01:10Z
dc.date.available
2020-10-26T13:01:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28657
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28406
dc.description.abstract
We study a variation of Bagchi and Datta's a-vector of a simplicial complex C, whose entries are defined as weighted averages of Betti numbers of induced subcomplexes of C. We show that these invariants satisfy an Alexander-Dehn-Sommerville type identity, and behave nicely under natural operations on triangulated manifolds and spheres such as connected sums and bistellar flips.
In the language of commutative algebra, the invariants are weighted sums of graded Betti numbers of the Stanley-Reisner ring of C. This interpretation implies, by a result of Adiprasito, that the Billera-Lee sphere maximizes these invariants among triangulated spheres with a given f-vector. For the first entry of sigma, we extend this bound to the class of strongly connected pure complexes.
As an application, we show how upper bounds on sigma can be used to obtain lower bounds on the f-vector of triangulated 4-manifolds with transitive symmetry on vertices and prescribed vector of Betti numbers.
en
dc.format.extent
40 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nd/4.0/
dc.subject
triangulations of manifolds
en
dc.subject
sigma-vector
en
dc.subject
graded Betti numbers
en
dc.subject
stacked and neighborly spheres
en
dc.subject
Billera-Lee polytopes
en
dc.subject
implicial complexes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Average Betti numbers of induced subcomplexes in triangulations of manifolds
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
3.40
dcterms.bibliographicCitation.doi
10.37236/8564
dcterms.bibliographicCitation.journaltitle
Electronic Journal of Combinatorics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
27
dcterms.bibliographicCitation.url
https://doi.org/10.37236/8564
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1077-8926
refubium.resourceType.provider
WoS-Alert