dc.contributor.author
Amos, Matt
dc.contributor.author
Young, Paul J.
dc.contributor.author
Hosking, J. Scott
dc.contributor.author
Lamarque, Jean-Francois
dc.contributor.author
Abraham, N. Luke
dc.contributor.author
Akiyoshi, Hideharu
dc.contributor.author
Archibald, Alexander T.
dc.contributor.author
Bekki, Slimane
dc.contributor.author
Deushi, Makoto
dc.contributor.author
Kunze, Markus
dc.date.accessioned
2020-10-26T11:01:26Z
dc.date.available
2020-10-26T11:01:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28652
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28401
dc.description.abstract
Calculating a multi-model mean, a commonly used method for ensemble averaging, assumes model independence and equal model skill. Sharing of model components amongst families of models and research centres, conflated by growing ensemble size, means model independence cannot be assumed and is hard to quantify. We present a methodology to produce a weighted-model ensemble projection, accounting for model performance and model independence. Model weights are calculated by comparing model hindcasts to a selection of metrics chosen for their physical relevance to the process or phenomena of interest. This weighting methodology is applied to the Chemistry-Climate Model Initiative (CCMI) ensemble to investigate Antarctic ozone depletion and subsequent recovery. The weighted mean projects an ozone recovery to 1980 levels, by 2056 with a 95 % confidence interval (2052-2060), 4 years earlier than the most recent study. Perfect-model testing and out-of-sample testing validate the results and show a greater projective skill than a standard multi-model mean. Interestingly, the construction of a weighted mean also provides insight into model performance and dependence between the models. This weighting methodology is robust to both model and metric choices and therefore has potential applications throughout the climate and chemistry-climate modelling communities.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
earth system model
en
dc.subject
return dates
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Projecting ozone hole recovery using an ensemble of chemistry-climate models weighted by model performance and independence
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.5194/acp-20-9961-2020
dcterms.bibliographicCitation.journaltitle
Atmospheric Chemistry and Physics
dcterms.bibliographicCitation.number
16
dcterms.bibliographicCitation.pagestart
9961
dcterms.bibliographicCitation.pageend
9977
dcterms.bibliographicCitation.volume
20
dcterms.bibliographicCitation.url
https://doi.org/10.5194/acp-20-9961-2020
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1680-7316
dcterms.isPartOf.eissn
1680-7324
refubium.resourceType.provider
WoS-Alert