dc.contributor.author
Conlon, David
dc.contributor.author
Das, Shagnik
dc.contributor.author
Lee, Joonkyung
dc.contributor.author
Mészáros, Tamás
dc.date.accessioned
2020-10-26T09:54:06Z
dc.date.available
2020-10-26T09:54:06Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28648
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28397
dc.description.abstract
A well‐known result of Rödl and Ruciński states that for any graph H there exists a constant C such that if urn:x-wiley:rsa:media:rsa20959:rsa20959-math-0001, then the random graph Gn, p is a.a.s. H‐Ramsey, that is, any 2‐coloring of its edges contains a monochromatic copy of H. Aside from a few simple exceptions, the corresponding 0‐statement also holds, that is, there exists c > 0 such that whenever urn:x-wiley:rsa:media:rsa20959:rsa20959-math-0002 the random graph Gn, p is a.a.s. not H‐Ramsey. We show that near this threshold, even when Gn, p is not H‐Ramsey, it is often extremely close to being H‐Ramsey. More precisely, we prove that for any constant c > 0 and any strictly 2‐balanced graph H, if urn:x-wiley:rsa:media:rsa20959:rsa20959-math-0003, then the random graph Gn, p a.a.s. has the property that every 2‐edge‐coloring without monochromatic copies of H cannot be extended to an H‐free coloring after urn:x-wiley:rsa:media:rsa20959:rsa20959-math-0004 extra random edges are added. This generalizes a result by Friedgut, Kohayakawa, Rödl, Ruciński, and Tetali, who in 2002 proved the same statement for triangles, and addresses a question raised by those authors. We also extend a result of theirs on the three‐color case and show that these theorems need not hold when H is not strictly 2‐balanced.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Ramsey theory
en
dc.subject
random graphs
en
dc.subject
positional games
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Ramsey games near the critical threshold
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/rsa.20959
dcterms.bibliographicCitation.journaltitle
Random Structures & Algorithms
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
940
dcterms.bibliographicCitation.pageend
957
dcterms.bibliographicCitation.volume
57
dcterms.bibliographicCitation.url
https://doi.org/10.1002/rsa.20959
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1098-2418
dcterms.isPartOf.zdb
1500812-5