dc.contributor.author
Thomas, Daniel A.
dc.contributor.author
Chang, Rayoon
dc.contributor.author
Mucha, Eike
dc.contributor.author
Lettow, Maike
dc.contributor.author
Greis, Kim
dc.contributor.author
Gewinner, Sandy
dc.contributor.author
Schöllkopf, Wieland
dc.contributor.author
Meijer, Gerard
dc.contributor.author
Helden, Gert von
dc.date.accessioned
2020-10-22T11:02:44Z
dc.date.available
2020-10-22T11:02:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28619
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28368
dc.description.abstract
Isolation of biomolecules in vacuum facilitates characterization of the intramolecular interactions that determine three-dimensional structure, but experimental quantification of conformer thermochemistry remains challenging. Infrared spectroscopy of molecules trapped in helium nanodroplets is a promising methodology for the measurement of thermochemical parameters. When molecules are captured in a helium nanodroplet, the rate of cooling to an equilibrium temperature ofca.0.4 K is generally faster than the rate of isomerization, resulting in "shock-freezing" that kinetically traps molecules in local conformational minima. This unique property enables the study of temperature-dependent conformational equilibriaviainfrared spectroscopy at 0.4 K, thereby avoiding the deleterious effects of spectral broadening at higher temperatures. Herein, we demonstrate the first application of this approach to ionic species by coupling electrospray ionization mass spectrometry (ESI-MS) with helium nanodroplet infrared action spectroscopy to probe the structure and thermochemistry of deprotonated DNA dinucleotides. Dinucleotide anions were generated by ESI, confined in an ion trap at temperatures between 90 and 350 K, and entrained in traversing helium nanodroplets. The infrared action spectra of the entrained ions show a strong dependence on pre-pickup ion temperature, consistent with the preservation of conformer population upon cooling to 0.4 K. Non-negative matrix factorization was utilized to identify component conformer infrared spectra and determine temperature-dependent conformer populations. Relative enthalpies and entropies of conformers were subsequently obtained from a van't Hoff analysis. IR spectra and conformer thermochemistry are compared to results from ion mobility spectrometry (IMS) and electronic structure methods. The implementation of ESI-MS as a source of dopant molecules expands the diversity of molecules accessible for thermochemical measurements, enabling the study of larger, non-volatile species.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
mobility-mass spectrometry
en
dc.subject
gas-phase conformations
en
dc.subject
photon dissociation spectroscopy
en
dc.subject
ion mobility
en
dc.subject
energy landscape
en
dc.subject
unsolvated peptides
en
dc.subject
cationized arginine
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Probing the conformational landscape and thermochemistry of DNA dinucleotide anionsviahelium nanodroplet infrared action spectroscopy
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/D0CP02482A
dcterms.bibliographicCitation.journaltitle
Physical Chemistry Chemical Physics
dcterms.bibliographicCitation.number
33
dcterms.bibliographicCitation.pagestart
18400
dcterms.bibliographicCitation.pageend
18413
dcterms.bibliographicCitation.volume
22
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D0CP02482A
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1463-9084
refubium.resourceType.provider
WoS-Alert