dc.contributor.author
Richter, Lorenz
dc.contributor.author
Boustati, Ayman
dc.contributor.author
Nüsken, Nikolas
dc.contributor.author
Ruiz, Francisco J. R.
dc.contributor.author
Akyildiz, Ömer Deniz
dc.date.accessioned
2020-10-22T05:51:39Z
dc.date.available
2020-10-22T05:51:39Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28607
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28356
dc.description.abstract
We analyse the properties of an unbiased gradient estimator of the evidence lower
bound (ELBO) for variational inference, based on the score function method with
leave-one-out control variates. We show that this gradient estimator can be obtained
using a new loss, defined as the variance of the log-ratio between the exact posterior
and the variational approximation, which we call the log-variance loss. Under
certain conditions, the gradient of the log-variance loss equals the gradient of the
(negative) ELBO. We show theoretically that this gradient estimator, which we call
VarGrad due to its connection to the log-variance loss, exhibits lower variance than
the score function method in certain settings, and that the leave-one-out control
variate coefficients are close to the optimal ones. We empirically demonstrate that
VarGrad offers a favourable variance versus computation trade-off compared to
other state-of-the-art estimators on a discrete variational autoencoder (VAE)
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Neural Information Processing Systems
en
dc.subject
Low-Variance Gradient Estimator
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
10436v1
dcterms.bibliographicCitation.journaltitle
arXiv.org
dcterms.bibliographicCitation.volume
2010
dcterms.bibliographicCitation.url
https://arxiv.org/abs/2010.10436v1
dcterms.bibliographicCitation.url
https://nips.cc/Conferences/2020/AcceptedPapersInitial
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
SFB 1114
refubium.affiliation.other
Projekt A02
refubium.affiliation.other
Projekt A05
refubium.note.author
34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access