dc.contributor.author
Dreiling, Jennifer
dc.contributor.author
Tilmann, Frederik
dc.contributor.author
Yuan, Xiaohui
dc.contributor.author
Haberland, Christian
dc.contributor.author
Seneviratne, S. W. Mahinda
dc.date.accessioned
2020-09-18T10:27:30Z
dc.date.available
2020-09-18T10:27:30Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28333
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28083
dc.description.abstract
We study the crustal structure of Sri Lanka by analyzing data from a temporary seismic network deployed in 2016-2017 to shed light on the amalgamation process from a geophysical perspective. Rayleigh wave phase dispersion curves from ambient noise cross correlation and receiver functions were jointly inverted using a transdimensional Bayesian approach. The Moho depths in Sri Lanka range between 30 and 40 km, with the thickest crust (38-40 km) beneath the central Highland Complex (HC). The thinnest crust (30-35 km) is found along the west coast, which experienced crustal thinning associated with the formation of the Mannar Basin. V-P/V-S ratios lie within a range of 1.60-1.82 and predominantly favor a felsic to intermediate bulk crustal composition with a significant silica content of the rocks. A major intracrustal (18-27 km), slightly westward dipping (similar to 4.3 degrees) interface with high V-S (similar to 4 km/s) underneath is prominent in the central HC, continuing into the western Vijayan Complex (VC). The discontinuity might have been part of the respective units prior to the collision and could be an indicator for the proposed tilting of the Wanni Complex/HC crustal sections. It might also be related to the deep crustal HC/VC thrust contact with the VC as an indenting promontory of high V-S. A low-velocity zone in the central HC could have been caused by fluid influx generated by the thrusting process.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Crustal Structure of Sri Lanka Derived From Joint Inversion of Surface Wave Dispersion and Receiver Functions Using a Bayesian Approach
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2019JB018688
dcterms.bibliographicCitation.doi
10.1029/2019JB018688
dcterms.bibliographicCitation.journaltitle
Journal of Geophysical Research: Solid Earth
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
125
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2019JB018688
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geophysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2169-9356
refubium.resourceType.provider
WoS-Alert