dc.contributor.author
Gubinelli, Massimiliano
dc.contributor.author
Perkowski, Nicolas
dc.date.accessioned
2020-11-05T14:05:29Z
dc.date.available
2020-11-05T14:05:29Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28318
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28068
dc.description.abstract
We develop a martingale approach for a class of singular stochastic PDEs of Burgers type (including fractional and multi-component Burgers equations) by constructing a domain for their infinitesimal generators. It was known that the domainmust have trivial intersection with the usual cylinder test functions, and to overcome this difficulty we import some ideas from paracontrolled distributions to an infinite dimensional setting in order to construct a domain of controlled functions. Using the new domain, we are able to prove existence and uniqueness for the Kolmogorov backward equation and the martingale problem. We also extend the uniqueness result for "energy solutions" of the stochastic Burgers equation of Gubinelli and Perkowski (J Am Math Soc 31(2):427-471, 2018) to a wider class of equations. As applications of our approach we prove that the stochastic Burgers equation on the torus is exponentially L-2-ergodic, and that the stochastic Burgers equation on the real line is ergodic.
en
dc.format.extent
58 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
strong uniqueness
en
dc.subject
Hilbert-spaces
en
dc.subject
kpz equation
en
dc.subject
renormalization
en
dc.subject
fluctuations
en
dc.subject
quantization
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
The infinitesimal generator of the stochastic Burgers equation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00440-020-00996-5
dcterms.bibliographicCitation.journaltitle
Probability Theory and Related Fields
dcterms.bibliographicCitation.number
3-4
dcterms.bibliographicCitation.pagestart
1067
dcterms.bibliographicCitation.pageend
1124
dcterms.bibliographicCitation.volume
178
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00440-020-00996-5
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0178-8051
dcterms.isPartOf.eissn
1432-2064
refubium.resourceType.provider
WoS-Alert