dc.contributor.author
Marzahl, Christian
dc.contributor.author
Aubreville, Marc
dc.contributor.author
Bertram, Christof A.
dc.contributor.author
Stayt, Jason
dc.contributor.author
Jasensky, Anne-Katherine
dc.contributor.author
Bartenschlager, Florian
dc.contributor.author
Fragoso-Garcia, Marco
dc.contributor.author
Barton, Ann Kristin
dc.contributor.author
Elsemann, Svenja
dc.contributor.author
Jabari, Samir
dc.date.accessioned
2020-09-09T14:13:03Z
dc.date.available
2020-09-09T14:13:03Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28225
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27975
dc.description.abstract
Exercise-induced pulmonary hemorrhage (EIPH) is a common condition in sport horses with negative impact on performance. Cytology of bronchoalveolar lavage fluid by use of a scoring system is considered the most sensitive diagnostic method. Macrophages are classified depending on the degree of cytoplasmic hemosiderin content. The current gold standard is manual grading, which is however monotonous and time-consuming. We evaluated state-of-the-art deep learning-based methods for single cell macrophage classification and compared them against the performance of nine cytology experts and evaluated inter- and intra-observer variability. Additionally, we evaluated object detection methods on a novel data set of 17 completely annotated cytology whole slide images (WSI) containing 78,047 hemosiderophages. Our deep learning-based approach reached a concordance of 0.85, partially exceeding human expert concordance (0.68 to 0.86, mean of 0.73, SD of 0.04). Intra-observer variability was high (0.68 to 0.88) and inter-observer concordance was moderate (Fleiss’ kappa = 0.67). Our object detection approach has a mean average precision of 0.66 over the five classes from the whole slide gigapixel image and a computation time of below two minutes. To mitigate the high inter- and intra-rater variability, we propose our automated object detection pipeline, enabling accurate, reproducible and quick EIPH scoring in WSI.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
bronchoalveolar lavage
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::630 Landwirtschaft::630 Landwirtschaft und verwandte Bereiche
dc.title
Deep Learning-Based Quantification of Pulmonary Hemosiderophages in Cytology Slides
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
9795
dcterms.bibliographicCitation.doi
10.1038/s41598-020-65958-2
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41598-020-65958-2
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Tierpathologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2045-2322
refubium.resourceType.provider
WoS-Alert