dc.contributor.author
Tu, Zhaoxu
dc.contributor.author
Donskyi, Ievgen S.
dc.contributor.author
Qiao, Haishi
dc.contributor.author
Zhu, Zhonglin
dc.contributor.author
Unger, Wolfgang E. S.
dc.contributor.author
Hackenberger, Christian P. R.
dc.contributor.author
Chen, Wei
dc.contributor.author
Adeli, Mohsen
dc.contributor.author
Haag, Rainer
dc.date.accessioned
2020-08-27T07:22:41Z
dc.date.available
2020-08-27T07:22:41Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28123
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27873
dc.description.abstract
Multidrug resistance resulting from a variety of defensive pathways in cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol‐covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser‐triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus‐targeting, high‐loading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Graphene Oxide‐Cyclic R10 Peptide
en
dc.subject
Multiple‐Drug Resistance
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::547 Organische Chemie
dc.title
Graphene Oxide‐Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple‐Drug Resistance
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2000933
dcterms.bibliographicCitation.doi
10.1002/adfm.202000933
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
35
dcterms.bibliographicCitation.volume
30
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202000933
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
dcterms.isPartOf.zdb
2039420-2