dc.contributor.author
Koltai, Péter
dc.contributor.author
Lie, Han Cheng
dc.contributor.author
Plonka, Martin
dc.date.accessioned
2020-08-19T10:40:19Z
dc.date.available
2020-08-19T10:40:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28084
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27834
dc.description.abstract
We prove the Fréchet differentiability with respect to the drift of Perron–Frobenius and Koopman operators associated to time-inhomogeneous ordinary stochastic differential equations. This result relies on a similar differentiability result for pathwise expectations of path functionals of the solution of the stochastic differential equation, which we establish using Girsanov's formula. We demonstrate the significance of our result in the context of dynamical systems and operator theory, by proving continuously differentiable drift dependence of the simple eigen- and singular values and the corresponding eigen- and singular functions of the stochastic Perron–Frobenius and Koopman operators.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
stochastic differential equations
en
dc.subject
transfer operator
en
dc.subject
Koopman operator
en
dc.subject
Perron–Frobenius operator
en
dc.subject
smooth drift dependence
en
dc.subject
linear response
en
dc.subject
pathwise expectations
en
dc.subject
Mathematics Subject Classification numbers: 37H99, 47H30, 58C20, 60H07, 60H10
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Fréchet differentiable drift dependence of Perron–Frobenius and Koopman operators for non-deterministic dynamics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1088/1361-6544/ab1f2a
dcterms.bibliographicCitation.journaltitle
Nonlinearity
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.pagestart
4232
dcterms.bibliographicCitation.pageend
4257
dcterms.bibliographicCitation.volume
32
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1361-6544/ab1f2a
refubium.affiliation
Mathematik und Informatik
refubium.funding
Open Access in Konsortiallizenz - IOP
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1361-6544