dc.contributor.author
Lang, Sonja
dc.contributor.author
Farowski, Fedja
dc.contributor.author
Martin, Anna
dc.contributor.author
Wisplinghoff, Hilmar
dc.contributor.author
Vehreschild, Maria J. G. T .
dc.contributor.author
Krawczyk, Marcin
dc.contributor.author
Nowag, Angela
dc.contributor.author
Kretzschmar, Anne
dc.contributor.author
Scholz, Claus
dc.contributor.author
Kasper, Philipp
dc.contributor.author
Roderburg, Christoph
dc.contributor.author
Lammert, Frank
dc.contributor.author
Goeser, Tobias
dc.contributor.author
Steffen, Hans-Michael
dc.contributor.author
Demir, Münevver
dc.date.accessioned
2020-08-20T12:47:44Z
dc.date.available
2020-08-20T12:47:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28067
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27817
dc.description.abstract
Liver fibrosis is the major determinant of liver related complications in patients with non-alcoholic fatty liver disease (NAFLD). A gut microbiota signature has been explored to predict advanced fibrosis in NAFLD patients. The aim of this study was to validate and compare the diagnostic performance of gut microbiota-based approaches to simple non-invasive tools for the prediction of advanced fibrosis in NAFLD. 16S rRNA gene sequencing was performed in a cohort of 83 biopsy-proven NAFLD patients and 13 patients with non-invasively diagnosed NAFLD-cirrhosis. Random Forest models based on clinical data and sequencing results were compared with transient elastography, the NAFLD fibrosis score (NFS) and FIB-4 index. A Random Forest model containing clinical features and bacterial taxa achieved an area under the curve (AUC) of 0.87 which was only marginally superior to a model without microbiota features (AUC 0.85). The model that aimed to validate a published algorithm achieved an AUC of 0.71. AUC's for NFS and FIB-4 index were 0.86 and 0.85. Transient elastography performed best with an AUC of 0.93. Gut microbiota signatures might help to predict advanced fibrosis in NAFLD. However, transient elastography achieved the best diagnostic performance for the detection of NAFLD patients at risk for disease progression.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
non-alcoholic fatty liver disease
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Prediction of advanced fibrosis in non-alcoholic fatty liver disease using gut microbiota-based approaches compared with simple non-invasive tools
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
9385
dcterms.bibliographicCitation.doi
10.1038/s41598-020-66241-0
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.originalpublishername
Nature Research
dcterms.bibliographicCitation.volume
10
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
32523101
dcterms.isPartOf.eissn
2045-2322