dc.contributor.author
Čavojská, Jana
dc.contributor.author
Petrasch, Julian
dc.contributor.author
Mattern, Denny
dc.contributor.author
Lehmann, Nicolas Jens
dc.contributor.author
Voisard, Agnès
dc.contributor.author
Böttcher, Peter
dc.date.accessioned
2020-07-29T09:06:26Z
dc.date.available
2020-07-29T09:06:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27925
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27678
dc.description.abstract
Computing 3D bone models using traditional Computed Tomography (CT) requires a high-radiation dose, cost and time. We present a fully automated, domain-agnostic method for estimating the 3D structure of a bone from a pair of 2D X-ray images. Our triplet loss-trained neural network extracts a 128-dimensional embedding of the 2D X-ray images. A classifier then finds the most closely matching 3D bone shape from a predefined set of shapes. Our predictions have an average root mean square (RMS) distance of 1.08 mm between the predicted and true shapes, making our approach more accurate than the average achieved by eight other examined 3D bone reconstruction approaches. Each embedding extracted from a 2D bone image is optimized to uniquely identify the 3D bone CT from which the 2D image originated and can serve as a kind of fingerprint of each bone; possible applications include faster, image content-based bone database searches for forensic purposes.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Image processing
en
dc.subject
Machine learning
en
dc.subject
X-ray tomography
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Estimating and abstracting the 3D structure of feline bones using neural networks on X-ray (2D) images
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
337
dcterms.bibliographicCitation.doi
10.1038/s42003-020-1057-3
dcterms.bibliographicCitation.journaltitle
Communications Biology
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s42003-020-1057-3
refubium.affiliation
Mathematik und Informatik
refubium.funding
Publikationsfonds FU
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2399-3642
dcterms.isPartOf.zdb
2919698-X