dc.contributor.author
Oltmanns, Sebastian
dc.contributor.author
Abben, Frauke Sophie
dc.contributor.author
Ender, Anatoli
dc.contributor.author
Aimon, Sophie
dc.contributor.author
Kovacs, Richard
dc.contributor.author
Sigrist, Stephan J.
dc.contributor.author
Storace, Douglas A.
dc.contributor.author
Geiger, Jörg R. P.
dc.contributor.author
Raccuglia, Davide
dc.date.accessioned
2020-09-08T06:03:02Z
dc.date.available
2020-09-08T06:03:02Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27848
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27601
dc.description.abstract
Understanding how neural networks generate activity patterns and communicate with each other requires monitoring the electrical activity from many neurons simultaneously. Perfectly suited tools for addressing this challenge are genetically encoded voltage indicators (GEVIs) because they can be targeted to specific cell types and optically report the electrical activity of individual, or populations of neurons. However, analyzing and interpreting the data from voltage imaging experiments is challenging because high recording speeds and properties of current GEVIs yield only low signal-to-noise ratios, making it necessary to apply specific analytical tools. Here, we present NOSA (Neuro-Optical Signal Analysis), a novel open source software designed for analyzing voltage imaging data and identifying temporal interactions between electrical activity patterns of different origin. In this work, we explain the challenges that arise during voltage imaging experiments and provide hands-on analytical solutions. We demonstrate how NOSA’s baseline fitting, filtering algorithms and movement correction can compensate for shifts in baseline fluorescence and extract electrical patterns from low signal-to-noise recordings. NOSA allows to efficiently identify oscillatory frequencies in electrical patterns, quantify neuronal response parameters and moreover provides an option for analyzing simultaneously recorded optical and electrical data derived from patch-clamp or other electrode-based recordings. To identify temporal relations between electrical activity patterns we implemented different options to perform cross correlation analysis, demonstrating their utility during voltage imaging in Drosophila and mice. All features combined, NOSA will facilitate the first steps into using GEVIs and help to realize their full potential for revealing cell-type specific connectivity and functional interactions.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
voltage imaging
en
dc.subject
analytical toolbox
en
dc.subject
multicellular activity
en
dc.subject
optical electrophysiology
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
NOSA, an Analytical Toolbox for Multicellular Optical Electrophysiology
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
712
dcterms.bibliographicCitation.doi
10.3389/fnins.2020.00712
dcterms.bibliographicCitation.journaltitle
Frontiers in Neuroscience
dcterms.bibliographicCitation.originalpublishername
Frontiers Media S.A.
dcterms.bibliographicCitation.volume
14
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.isSupplementedBy.url
https://github.com/DavideR2020/NOSA
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
32765213
dcterms.isPartOf.eissn
1662-453X