dc.contributor.author
Lorenz, Mario
dc.contributor.author
Lehmann, Stephanie
dc.contributor.author
Djordjevic, Ilija
dc.contributor.author
Düsterhöft, Thomas
dc.contributor.author
Zimmermann, Benno F.
dc.contributor.author
Stangl, Karl
dc.contributor.author
Stangl, Verena
dc.date.accessioned
2020-05-28T14:35:47Z
dc.date.available
2020-05-28T14:35:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27400
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27156
dc.description.abstract
Improvement of endothelial function represents a major health effect of tea in humans. Ex vivo, tea and tea polyphenols stimulate nitric oxide (NO)-dependent vasodilation in isolated blood vessels. However, it was reported that polyphenols can generate reactive oxygen species (ROS) in vitro. We therefore aimed to elucidate the role of ROS production in tea polyphenol-induced vasodilation in explanted aortic rings. Vasorelaxation of rat aortic rings was assessed in an organ chamber model with low concentrations of epigallocatechin-3-gallate (EGCG), theaflavin-3,3'-digallate (TF3), and with green and black tea, with or without pretreatment with catalase or superoxide dismutase (SOD). The stability of EGCG and TF3 was measured by HPLC, and the levels of hydrogen peroxide (H2O2) were determined. EGCG and green tea-induced vasorelaxation was completely prevented by catalase and slightly increased by SOD. TF3 and black tea yielded similar results. Both EGCG and TF3 were rapidly degraded. This was associated with increasing H2O2 levels over time. Hydrogen peroxide concentrations produced in a time range compatible with tea polyphenol decay induced NO-dependent vasodilation in aortic rings. In conclusion, tea polyphenol-induced vasodilation in vitro is mediated by low levels of H2O2 generated during compound decay. The results could explain the apparent lack of vasodilatory effects of isolated tea polyphenols in humans.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
vasodilation
en
dc.subject
hydrogen peroxide
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Vasodilation of Tea Polyphenols Ex Vivo Is Mediated by Hydrogen Peroxide Under Rapid Compound Decay
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
390
dcterms.bibliographicCitation.doi
10.3390/antiox9050390
dcterms.bibliographicCitation.journaltitle
Antioxidants
dcterms.bibliographicCitation.originalpublishername
MDPI AG
dcterms.bibliographicCitation.volume
9
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
32392754
dcterms.isPartOf.eissn
2076-3921