dc.contributor.author
Reecht, Gaël
dc.contributor.author
Krane, Nils
dc.contributor.author
Lotze, Christian
dc.contributor.author
Franke, Katharina J.
dc.date.accessioned
2020-06-02T09:15:37Z
dc.date.available
2020-06-02T09:15:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27346
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27102
dc.description.abstract
For a molecular radical to be stable, the environment needs to be inert. Furthermore, an unpaired electron is less likely to react chemically when it is placed in an extended orbital. Here, we use the tip of a scanning tunneling microscope to abstract one of the pyrrolic hydrogen atoms from phthalocyanine (H2Pc) deposited on a single layer of molybdenum disulfide (MoS2) on Au(111). We show the successful dissociation reaction by current-induced three-level fluctuations reflecting the inequivalent positions of the remaining H atom in the pyrrole center. Tunneling spectroscopy reveals two narrow resonances inside the semiconducting energy gap of MoS2 with their spatial extent resembling the highest occupied molecular orbital (HOMO) of H2Pc. By comparison to simple density functional calculations of the isolated molecule, we show that these correspond to a single occupation of the Coulomb-split highest molecular orbital of HPc. We conclude that the dangling σ bond after N–H bond cleavage is filled by an electron from the delocalized HOMO. The extended nature of the HOMO together with the inert nature of the MoS2 layer favors the stabilization of this radical state.
en
dc.format.extent
8 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
single-molecule chemistry
en
dc.subject
phthalocyanine
en
dc.subject
molybdenum disulfide
en
dc.subject
scanning tunneling microscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
π-radical formation by pyrrolic H abstraction of phthalocyanine molecules on molybdenum disulfide
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acsnano.9b02117
dcterms.bibliographicCitation.journaltitle
ACS nano
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.pagestart
7031
dcterms.bibliographicCitation.pageend
7035
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acsnano.9b02117
refubium.affiliation
Physik
refubium.note.author
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acsnano.9b02117.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1936-0851
dcterms.isPartOf.eissn
1936-086X