dc.contributor.author
Riedel, Christian
dc.contributor.author
Minton, David A.
dc.contributor.author
Michael, Gregory
dc.contributor.author
Orgel, Csilla
dc.contributor.author
Bogert, Carolyn H. van der
dc.contributor.author
Hiesinger, Harald
dc.date.accessioned
2020-04-21T08:55:56Z
dc.date.available
2020-04-21T08:55:56Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27128
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26888
dc.description.abstract
The crater record of a planetary surface unit is often analyzed by its cumulative size‐frequency distribution (CSFD). Measuring CSFDs involves traditional approaches, such as traditional crater counting (TCC) and buffered crater counting (BCC), as well as geometric corrections, such as nonsparseness correction (NSC) and buffered nonsparseness correction (BNSC). NSC and BNSC consider the effects of geometric crater obliteration on the CSFD. On the Moon, crater obliteration leads to two distinct states in which obtained CSFDs do not match the production CSFD—crater equilibrium and nonsparseness. Crater equilibrium occurs when each new impact erases a preexisting crater of the same size. It is clearly observed on lunar terrains dominated by small simple craters with steep‐sloped production CSFDs, such as Imbrian to Eratosthenian‐era mare units. Nonsparseness, on the other hand, is caused by the geometric overlap of preexisting craters by a new impact, which is also known as “cookie cutting.” Cookie cutting is most clearly observed on lunar terrains dominated by large craters with shallow‐sloped production CSFDs, such as the pre‐Nectarian lunar highlands. We use the Cratered Terrain Evolution Model (CTEM) to simulate the evolution of a pre‐Nectarian surface unit. The model was previously used to simulate the diffusion‐induced equilibrium for small craters of the lunar maria. We find that relative to their size, large craters contribute less to the diffusion of the surrounding landscape than small craters. Thus, a simple scale dependence cannot account for the per‐crater contribution to degradation by small simple and large complex craters.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
surface evolution
en
dc.subject
crater equilibrium
en
dc.subject
nonsparseness
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Degradation of small simple and large complex lunar craters: Not a simple scale dependence
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2019JE006273
dcterms.bibliographicCitation.doi
10.1029/2019JE006273
dcterms.bibliographicCitation.journaltitle
Journal of geophysical research
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
125
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2019JE006273
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde von der Freien Universität Berlin finanziert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2169-9097
dcterms.isPartOf.eissn
2169-9100