dc.contributor.author
Corbi, F.
dc.contributor.author
Bedford, J.
dc.contributor.author
Sandri, L.
dc.contributor.author
Funiciello, F.
dc.contributor.author
Gualandi, A.
dc.contributor.author
Rosenau, M.
dc.date.accessioned
2020-04-01T13:40:45Z
dc.date.available
2020-04-01T13:40:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27052
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26813
dc.description.abstract
Subduction zones are monitored using space geodesy with increasing resolution, with the aim of better capturing the deformation accompanying the seismic cycle. Here, we investigate data characteristics that maximize the performance of a machine learning binary classifier predicting slip‐event imminence. We overcome the scarcity of recorded instances from real subduction zones using data from a seismotectonic analog model monitored with a spatially dense, continuously recording onshore geodetic network. We show that a 70–85 km‐wide coastal swath recording interseismic deformation gives the most important information on slip imminence. Prediction performances are mainly influenced by the alarm duration (amount of time that we consider an event as imminent), with density of stations and record length playing a secondary role. The techniques developed in this study are most likely applicable in regions of slow earthquakes, where stick‐slip‐like failures occur at time intervals of months to years.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
megathrust earthquakes
en
dc.subject
machine learning
en
dc.subject
analog modeling
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Predicting imminence of analog megathrust earthquakes with machine learning: Implications for monitoring subduction zones
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2019GL086615
dcterms.bibliographicCitation.doi
10.1029/2019GL086615
dcterms.bibliographicCitation.journaltitle
Geophysical research letters
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.volume
47
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2019GL086615
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde von der Freien Universität Berlin finanziert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0094-8276
dcterms.isPartOf.eissn
1944-8007