dc.contributor.author
Guggenmos, Matthias
dc.contributor.author
Schmack, Katharina
dc.contributor.author
Veer, Ilya M.
dc.contributor.author
Lett, Tristram
dc.contributor.author
Sekutowicz, Maria
dc.contributor.author
Sebold, Miriam
dc.contributor.author
Garbusow, Maria
dc.contributor.author
Sommer, Christian
dc.contributor.author
Wittchen, Hans-Ulrich
dc.contributor.author
Zimmermann, Ulrich S.
dc.contributor.author
Smolka, Michael N.
dc.contributor.author
Walter, Henrik
dc.contributor.author
Heinz, Andreas
dc.contributor.author
Sterzer, Philipp
dc.date.accessioned
2020-02-28T12:10:22Z
dc.date.available
2020-02-28T12:10:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26786
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26543
dc.description.abstract
With progress in magnetic resonance imaging technology and a broader dissemination of state-of-the-art imaging facilities, the acquisition of multiple neuroimaging modalities is becoming increasingly feasible. One particular hope associated with multimodal neuroimaging is the development of reliable data-driven diagnostic classifiers for psychiatric disorders, yet previous studies have often failed to find a benefit of combining multiple modalities. As a psychiatric disorder with established neurobiological effects at several levels of description, alcohol dependence is particularly well-suited for multimodal classification. To this aim, we developed a multimodal classification scheme and applied it to a rich neuroimaging battery (structural, functional task-based and functional resting-state data) collected in a matched sample of alcohol-dependent patients (N = 119) and controls (N = 97). We found that our classification scheme yielded 79.3% diagnostic accuracy, which outperformed the strongest individual modality - grey-matter density - by 2.7%. We found that this moderate benefit of multimodal classification depended on a number of critical design choices: a procedure to select optimal modality-specific classifiers, a fine-grained ensemble prediction based on cross-modal weight matrices and continuous classifier decision values. We conclude that the combination of multiple neuroimaging modalities is able to moderately improve the accuracy of machine-learning-based diagnostic classification in alcohol dependence.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
magnetic resonance imaging
en
dc.subject
multimodal neuroimaging
en
dc.subject
alcohol dependence
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
A multimodal neuroimaging classifier for alcohol dependence
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
298
dcterms.bibliographicCitation.doi
10.1038/s41598-019-56923-9
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Nature Publishing Group
dcterms.bibliographicCitation.volume
10
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
31941972
dcterms.isPartOf.eissn
2045-2322