dc.contributor.author
Gao, Mengfei
dc.date.accessioned
2020-02-19T13:06:05Z
dc.date.available
2020-02-19T13:06:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26703
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26460
dc.description.abstract
Expansion microscopy (ExM) was introduced since 2015 and has been fast developed
since then. This technique, via physical enlargement of fluorescence carried biological
samples, can resolve structures of tens of nanometers with conventional microscopes.
Here I discussed the current methods in ExM and influences of different fixation,
protease digestion and labelling methods used in ExM. Validation of ExM was also
carried out in the work using image registration of microtubule cytoskeletons and the
190 nm periodic structures of β-spectrin ring structures in neurons.
Next, the combination of ExM with other super-resolution techniques, e.g. stimulated
emission depletion (STED) microscopy was proposed. The centrosome protein
CEP152, the primary cilium and microtubule were resolved using expansion STED
(ExSTED) microscopy. With the optimized ExSTED microscopy, a sub-10 nm 2D and
a sub-50 nm 3D resolution was achieved. Structured illumination microscopy (SIM)
was also attempted to image the expanded hydrogels, but severe artifacts were
observed.
Finally, a tri-functional fluorescent probe was proposed, where a fluorescent dye was
linked with a benzyl-guanine and an acrylic acid group. The probe was used to stain a
SNAP-tagged nuclear pore protein in cells and used to crosslink proteins to
acrylamide-based hydrogel in ExM.
en
dc.format.extent
ix, 107 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject
super-resolution
en
dc.subject
expansion microscopy
en
dc.subject.ddc
500 Natural sciences and mathematics::570 Life sciences::572 Biochemistry
dc.title
Combining expansion microscopy with other super-resolution techniques
dc.contributor.gender
female
dc.contributor.firstReferee
Ewers, Helge
dc.contributor.furtherReferee
Bottanelli, Francesca
dc.date.accepted
2020-01-20
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-26703-9
refubium.affiliation
Biologie, Chemie, Pharmazie
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access
dcterms.accessRights.proquest
accept