dc.contributor.author
Maier, Corinna
dc.contributor.author
Hartung, Niklas
dc.contributor.author
Wiljes, Jana de
dc.contributor.author
Kloft, Charlotte
dc.contributor.author
Huisinga, Wilhelm
dc.date.accessioned
2020-02-14T12:15:03Z
dc.date.available
2020-02-14T12:15:03Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26676
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26433
dc.description.abstract
An essential component of therapeutic drug/biomarker monitoring (TDM) is to combine patient data with prior knowledge for model‐based predictions of therapy outcomes. Current Bayesian forecasting tools typically rely only on the most probable model parameters (maximum a posteriori (MAP) estimate). This MAP‐based approach, however, does neither necessarily predict the most probable outcome nor does it quantify the risks of treatment inefficacy or toxicity. Bayesian data assimilation (DA) methods overcome these limitations by providing a comprehensive uncertainty quantification. We compare DA methods with MAP‐based approaches and show how probabilistic statements about key markers related to chemotherapy‐induced neutropenia can be leveraged for more informative decision support in individualized chemotherapy. Sequential Bayesian DA proved to be most computationally efficient for handling interoccasion variability and integrating TDM data. For new digital monitoring devices enabling more frequent data collection, these features will be of critical importance to improve patient care decisions in various therapeutic areas.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Bayesian data assimilation
en
dc.subject
informed decision making
en
dc.subject
individualized chemotherapy
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::615 Pharmakologie, Therapeutik
dc.title
Bayesian data assimilation to support informed decision making in individualized chemotherapy
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/psp4.12492
dcterms.bibliographicCitation.journaltitle
CPT: pharmacometrics & systems pharmacology
dcterms.bibliographicCitation.url
https://doi.org/10.1002/psp4.12492
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Pharmazie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2163-8306
refubium.resourceType.provider
WoS-Alert