dc.contributor.author
Mueller, Niclas S.
dc.contributor.author
Vieira, Bruno G. M.
dc.contributor.author
Schulz, Florian
dc.contributor.author
Kusch, Patryk
dc.contributor.author
Oddone, Valerio
dc.contributor.author
Barros, Eduardo B.
dc.contributor.author
Lange, Holger
dc.contributor.author
Reich, Stephanie
dc.date.accessioned
2020-02-03T10:19:48Z
dc.date.available
2020-02-03T10:19:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26567
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26324
dc.description.abstract
We demonstrate the excitation of dark plasmon modes with linearly polarized light at normal incidence in self-assembled layers of gold nanoparticles. Because of field retardation, the incident light field induces plasmonic dipoles that are parallel within each layer but antiparallel between the layers, resulting in a vanishing net dipole moment. Using microabsorbance spectroscopy we measured a pronounced absorbance peak and reflectance dip at 1.5 eV for bi- and trilayers of gold nanoparticles with a diameter of 46 nm and 2 nm interparticle gap size. The excitations were identified as dark interlayer plasmons by finite-difference time-domain simulations. The dark plasmon modes are predicted to evolve into standing waves when further increasing the layer number, which leads to 90% transmittance of the incident light through the nanoparticle film. Our approach is easy to implement and paves the way for large-area coatings with tunable plasmon resonance.
en
dc.format.extent
24 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
dark plasmon
en
dc.subject
self-assembly
en
dc.subject
gold nanoparticles
en
dc.subject
microabsorbance spectroscopy
en
dc.subject
finite-difference time-domain
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Dark interlayer plasmons in colloidal gold nanoparticle bi- and few-layers
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acsphotonics.8b00898
dcterms.bibliographicCitation.journaltitle
ACS photonics
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
3962
dcterms.bibliographicCitation.pageend
3969
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acsphotonics.8b00898
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2330-4022