dc.contributor.author
Knyazev, Denis G.
dc.contributor.author
Kuttner, Roland
dc.contributor.author
Bondar, Ana-Nicoleta
dc.contributor.author
Zimmerman, Mirjam
dc.contributor.author
Siligan, Christine
dc.contributor.author
Pohl, Peter
dc.date.accessioned
2020-01-30T13:53:46Z
dc.date.available
2020-01-30T13:53:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26550
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26309
dc.description.abstract
The bacterial channel SecYEG efficiently translocates both hydrophobic and hydrophilic proteins across the plasma membrane. Translocating polypeptide chains may dislodge the plug, a half helix that blocks the permeation of small molecules, from its position in the middle of the aqueous translocation channel. Instead of the plug, six isoleucines in the middle of the membrane supposedly seal the channel, by forming a gasket around the translocating polypeptide. However, this hypothesis does not explain how the tightness of the gasket may depend on membrane potential. Here, we demonstrate voltage-dependent closings of the purified and reconstituted channel in the presence of ligands, suggesting that voltage sensitivity may be conferred by motor protein SecA, ribosomes, signal peptides, and/or translocating peptides. Yet, the presence of a voltage sensor intrinsic to SecYEG was indicated by voltage driven closure of pores that were forced-open either by crosslinking the plug to SecE or by plug deletion. We tested the involvement of SecY’s half-helix 2b (TM2b) in voltage sensing, since clearly identifiable gating charges are missing. The mutation L80D accelerated voltage driven closings by reversing TM2b’s dipolar orientation. In contrast, the L80K mutation decelerated voltage induced closings by increasing TM2b’s dipole moment. The observations suggest that TM2b is part of a larger voltage sensor. By partly aligning the combined dipole of this sensor with the orientation of the membrane-spanning electric field, voltage may drive channel closure.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Voltage Sensing in Bacterial Protein Translocation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
78
dcterms.bibliographicCitation.doi
10.3390/biom10010078
dcterms.bibliographicCitation.journaltitle
Biomolecules
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.3390/biom10010078
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2218-273X