dc.contributor.author
Moawad, Amira A.
dc.contributor.author
Silge, Anja
dc.contributor.author
Bocklitz, Thomas
dc.contributor.author
Fischer, Katja
dc.contributor.author
Rösch, Petra
dc.contributor.author
Roesler, Uwe
dc.contributor.author
Elschner, Mandy C.
dc.contributor.author
Popp, Jürgen
dc.contributor.author
Neubauer, Heinrich
dc.date.accessioned
2020-01-30T09:26:01Z
dc.date.available
2020-01-30T09:26:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26540
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26298
dc.description.abstract
Burkholderia (B.) mallei, the causative agent of glanders, and B. pseudomallei, the causative agent of melioidosis in humans and animals, are genetically closely related. The high infectious potential of both organisms, their serological cross-reactivity, and similar clinical symptoms in human and animals make the differentiation from each other and other Burkholderia species challenging. The increased resistance against many antibiotics implies the need for fast and robust identification methods. The use of Raman microspectroscopy in microbial diagnostic has the potential for rapid and reliable identification. Single bacterial cells are directly probed and a broad range of phenotypic information is recorded, which is subsequently analyzed by machine learning methods. Burkholderia were handled under biosafety level 1 (BSL 1) conditions after heat inactivation. The clusters of the spectral phenotypes and the diagnostic relevance of the Burkholderia spp. were considered for an advanced hierarchical machine learning approach. The strain panel for training involved 12 B. mallei, 13 B. pseudomallei and 11 other Burkholderia spp. type strains. The combination of top- and sub-level classifier identified the mallei-complex with high sensitivities (>95%). The reliable identification of unknown B. mallei and B. pseudomallei strains highlighted the robustness of the machine learning-based Raman spectroscopic assay.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Raman spectroscopy
en
dc.subject
Burkholderia mallei
en
dc.subject
Burkholderia pseudomallei
en
dc.subject
heat inactivation
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.title
A Machine Learning-Based Raman Spectroscopic Assay for the Identification of Burkholderia mallei and Related Species
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2019-12-20T14:09:28Z
dcterms.bibliographicCitation.articlenumber
4516
dcterms.bibliographicCitation.doi
10.3390/molecules24244516
dcterms.bibliographicCitation.journaltitle
Molecules
dcterms.bibliographicCitation.number
24
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
24
dcterms.bibliographicCitation.url
https://doi.org/10.3390/molecules24244516
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Tier- und Umwelthygiene
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1420-3049