dc.contributor.author
Klus, Stefan
dc.contributor.author
Gelß, Patrick
dc.date.accessioned
2020-01-20T15:25:54Z
dc.date.available
2020-01-20T15:25:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26471
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26231
dc.description.abstract
Interest in machine learning with tensor networks has been growing rapidly in recent years. We show that tensor-based methods developed for learning the governing equations of dynamical systems from data can, in the same way, be used for supervised learning problems and propose two novel approaches for image classification. One is a kernel-based reformulation of the previously introduced multidimensional approximation of nonlinear dynamics (MANDy), the other an alternating ridge regression in the tensor train format. We apply both methods to the MNIST and fashion MNIST data set and show that the approaches are competitive with state-of-the-art neural network-based classifiers.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
quantum machine learning
en
dc.subject
image classification
en
dc.subject
tensor train format
en
dc.subject
kernel-based methods
en
dc.subject
ridge regression
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Tensor-Based Algorithms for Image Classification
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
240
dcterms.bibliographicCitation.doi
10.3390/a12110240
dcterms.bibliographicCitation.journaltitle
Algorithms
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.3390/a12110240
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin und der DFG gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1999-4893