dc.contributor.author
Uematsu, Yuki
dc.contributor.author
Netz, Roland R.
dc.contributor.author
Bonthuis, Douwe Jan
dc.date.accessioned
2020-01-15T11:06:44Z
dc.date.available
2020-01-15T11:06:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26401
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26161
dc.description.abstract
We construct an analytical model to account for the influence of the subnanometer-wide interfacial layer on the differential capacitance and the electro-osmotic mobility of solid–electrolyte interfaces. The interfacial layer is incorporated into the Poisson–Boltzmann and Stokes equations using a box model for the dielectric properties, the viscosity, and the ionic potential of mean force. We calculate the differential capacitance and the electro-osmotic mobility as a function of the surface charge density and the salt concentration, both with and without steric interactions between the ions. We compare the results from our theoretical model with experimental data on a variety of systems (graphite and metallic silver for capacitance and titanium oxide and silver iodide for electro-osmotic data). The differential capacitance of silver as a function of salinity and surface charge density is well reproduced by our theory, using either the width of the interfacial layer or the ionic potential of mean force as the only fitting parameter. The differential capacitance of graphite, however, needs an additional carbon capacitance to explain the experimental data. Our theory yields a power-law dependence of the electro-osmotic mobility on the surface charge density for high surface charges, reproducing the experimental data using both the interfacial parameters extracted from molecular dynamics simulations and fitted interfacial parameters. Finally, we examine different types of hydrodynamic boundary conditions for the power-law behavior of the electro-osmotic mobility, showing that a finite-viscosity layer explains the experimental data better than the usual hydrodynamic slip boundary condition. Our analytical model thus allows us to extract the properties of the subnanometer-wide interfacial layer by fitting to macroscopic experimental data.
en
dc.format.extent
58 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
surface charge
en
dc.subject
theoretical chemistry
en
dc.subject
computational chemistry
en
dc.subject
electrical properties ions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Analytical interfacial layer model for the capacitance and electrokinetics of charged aqueous interfaces
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.langmuir.7b04171
dcterms.bibliographicCitation.journaltitle
Langmuir
dcterms.bibliographicCitation.number
31
dcterms.bibliographicCitation.pagestart
9097
dcterms.bibliographicCitation.pageend
9113
dcterms.bibliographicCitation.volume
34
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.langmuir.7b04171
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0743-7463
dcterms.isPartOf.eissn
1520-5827