dc.contributor.author
Wust, Peter
dc.contributor.author
Ghadjar, Pirus
dc.contributor.author
Nadobny, Jacek
dc.contributor.author
Beck, Marcus
dc.contributor.author
Kaul, David
dc.contributor.author
Winter, Lukas
dc.contributor.author
Zschaeck, Sebastian
dc.date.accessioned
2019-12-16T10:20:01Z
dc.date.available
2019-12-16T10:20:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26259
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26019
dc.description.abstract
Purpose: Preclinical studies and clinical observations suggest that amplitude modulation (AM) below 100 kHz may enhance the intratumoral power absorption of radiofrequency hyperthermia at 13.56 MHz; however, it remains unclear whether AM induces temperature-dependent effects.Methods: We established tumor models assuming typical tumor architectures or cell suspensions to analyze the effects of additional power dissipation. The preconditions for demodulation at cell membranes in situ were outlined. The bioheat transfer equation was solved analytically for the selected models and the possibility of circumscribed temperature increases (point heating) with dependency on the specific absorption rate (SAR) peaks was estimated for centimeter down to nanometer scales.Results: Very-low-frequency (VLF) AM radiofrequency can increase the SAR in the extracellular space or necrosis of tumors as compared to radiofrequencies alone. Such modulation-derived SAR peaks can induce higher temperatures (hot spots) in tumors with necrotic areas of millimeter to centimeter size. However, for lesions <1 cm, excessive (unrealistic) SAR > 1000, 10,000 and 1014 W/kg for diameters of ∼5 mm, ∼1 mm and ∼10 nm (nanoheating), respectively, would be required to explain the cell kill observed in pre-clinical and clinical data, even with VLF modulation.Conclusion: Our analysis suggests that VLF AM of radiofrequency hyperthermia for a theoretical tumor model cannot induce relevant temperature-dependent effects, as the associated temperature increases caused by the resultant SAR peaks are too small. Further investigation of possible non-temperature-dependent effects is recommended.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
specific absorption rate (SAR)
en
dc.subject
amplitude modulation (AM)
en
dc.subject
temperature-dependent effects
en
dc.subject
very low frequencies (VLF)
en
dc.subject
radiofrequency hyperthermia
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Physical analysis of temperature-dependent effects of amplitude-modulated electromagnetic hyperthermia
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1080/02656736.2019.1692376
dcterms.bibliographicCitation.journaltitle
International Journal of Hyperthermia
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Taylor & Francis Group
dcterms.bibliographicCitation.pagestart
1246
dcterms.bibliographicCitation.pageend
1254
dcterms.bibliographicCitation.volume
36
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
31818170
dcterms.isPartOf.eissn
1464-5157