dc.contributor.author
Astaburuaga, Rosario
dc.contributor.author
Quintanar Haro, Orlando Daniel
dc.contributor.author
Stauber, Tobias
dc.contributor.author
Relógio, Angela
dc.date.accessioned
2019-12-13T15:07:21Z
dc.date.available
2019-12-13T15:07:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26255
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26015
dc.description.abstract
The establishment and maintenance of ion gradients between the interior of lysosomes and the cytosol are crucial for numerous cellular and organismal functions. Numerous ion transport proteins ensure the required variation in luminal concentrations of the different ions along the endocytic pathway to fit the needs of the organelles. Failures in keeping proper ion homeostasis have pathological consequences. Accordingly, several human diseases are caused by the dysfunction of ion transporters. These include osteopetrosis, caused by the dysfunction of Cl-/H+ exchange by the lysosomal transporter ClC-7. To better understand how chloride transport affects lysosomal ion homeostasis and how its disruption impinges on lysosomal function, we developed a mathematical model of lysosomal ion homeostasis including Ca2+ dynamics. The model recapitulates known biophysical properties of ClC-7 and enables the investigation of its differential activation kinetics on lysosomal ion homeostasis. We show that normal functioning of ClC-7 supports the acidification process, is associated with increased luminal concentrations of sodium, potassium, and chloride, and leads to a higher Ca2+ uptake and release. Our model highlights the role of ClC-7 in lysosomal acidification and shows the existence of differential Ca2+ dynamics upon perturbations of Cl-/H+ exchange and its activation kinetics, with possible pathological consequences.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
mathematical modelling
en
dc.subject
lysosomal homeostasis
en
dc.subject
slowly voltage-gated chloride transport
en
dc.subject
lysosomal Ca2+ dynamics
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
A Mathematical Model of Lysosomal Ion Homeostasis Points to Differential Effects of Cl- Transport in Ca2+ Dynamics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
1263
dcterms.bibliographicCitation.doi
10.3390/cells8101263
dcterms.bibliographicCitation.journaltitle
Cells
dcterms.bibliographicCitation.originalpublishername
MDPI AG
dcterms.bibliographicCitation.volume
8
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
31623161
dcterms.isPartOf.eissn
2073-4409