dc.contributor.author
Upadhyay, Abhishek
dc.contributor.author
Brunner, Michael
dc.contributor.author
Herzel, Hanspeter
dc.date.accessioned
2019-12-12T14:53:32Z
dc.date.available
2019-12-12T14:53:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26206
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25966
dc.description.abstract
Autonomous endogenous time-keeping is ubiquitous across many living organisms, known as the circadian clock when it has a period of about 24 h. Interestingly, the fundamental design principle with a network of interconnected negative and positive feedback loops is conserved through evolution, although the molecular components differ. Filamentous fungus Neurospora crassa is a well-established chrono-genetics model organism to investigate the underlying mechanisms. The core negative feedback loop of the clock of Neurospora is composed of the transcription activator White Collar Complex (WCC) (heterodimer of WC1 and WC2) and the inhibitory element called FFC complex, which is made of FRQ (Frequency protein), FRH (Frequency interacting RNA Helicase) and CK1a (Casein kinase 1a). While exploring their temporal dynamics, we investigate how limit cycle oscillations arise and how molecular switches support self-sustained rhythms. We develop a mathematical model of 10 variables with 26 parameters to understand the interactions and feedback among WC1 and FFC elements in nuclear and cytoplasmic compartments. We performed control and bifurcation analysis to show that our novel model produces robust oscillations with a wild-type period of 22.5 h. Our model reveals a switch between WC1-induced transcription and FFC-assisted inactivation of WC1. Using the new model, we also study the possible mechanisms of glucose compensation. A fairly simple model with just three nonlinearities helps to elucidate clock dynamics, revealing a mechanism of rhythms' production. The model can further be utilized to study entrainment and temperature compensation.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Neurospora crassa
en
dc.subject
circadian clock
en
dc.subject
glucose compensation
en
dc.subject
mathematical modeling
en
dc.subject
molecular switch
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
An Inactivation Switch Enables Rhythms in a Neurospora Clock Model
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2985
dcterms.bibliographicCitation.doi
10.3390/ijms20122985
dcterms.bibliographicCitation.journaltitle
International Journal of Molecular Sciences
dcterms.bibliographicCitation.originalpublishername
MDPI AG
dcterms.bibliographicCitation.volume
20
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
31248072
dcterms.isPartOf.eissn
1422-0067