dc.contributor.author
Kreutzmann, Ann-Kristin
dc.contributor.author
Pannier, Soeren
dc.contributor.author
Rojas-Perilla, Natalia
dc.contributor.author
Schmid, Timo
dc.contributor.author
Templ, Matthias
dc.contributor.author
Tzavidis, Nikos
dc.date.accessioned
2019-12-09T11:15:48Z
dc.date.available
2019-12-09T11:15:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26067
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25826
dc.description.abstract
The R package emdi enables the estimation of regionally disaggregated indicators using small area estimation methods and includes tools for processing, assessing, and presenting the results. The mean of the target variable, the quantiles of its distribution, the headcount ratio, the poverty gap, the Gini coefficient, the quintile share ratio, and customized indicators are estimated using direct and model-based estimation with the empirical best predictor (Molina and Rao 2010). The user is assisted by automatic estimation of datadriven transformation parameters. Parametric and semi-parametric, wild bootstrap for mean squared error estimation are implemented with the latter offering protection against possible misspecification of the error distribution. Tools for (a) customized parallel computing, (b) model diagnostic analyses, (c) creating high quality maps and (d) exporting the results to Excel and OpenDocument Spreadsheets are included. The functionality of the package is illustrated with example data sets for estimating the Gini coefficient and median income for districts in Austria.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
official statistics
en
dc.subject
survey statistics
en
dc.subject
parallel computing
en
dc.subject
small area estimation
en
dc.subject
visualization
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.title
The R Package emdi for Estimating and Mapping Regionally Disaggregated Indicators
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.18637/jss.v091.i07
dcterms.bibliographicCitation.journaltitle
Journal of Statistical Software
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.volume
91
dcterms.bibliographicCitation.url
https://www.jstatsoft.org/article/view/v091i07
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Volkswirtschaftslehre
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1548-7660