dc.contributor.author
Craciun, Gheorghe
dc.contributor.author
Johnston, Matthew D.
dc.contributor.author
Szederkényi, Gábor
dc.contributor.author
Tonello, Elisa
dc.contributor.author
Tóth, János
dc.contributor.author
Yu, Polly Y.
dc.date.accessioned
2019-12-02T13:33:30Z
dc.date.available
2019-12-02T13:33:30Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26026
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25785
dc.description.abstract
The induced kinetic differential equations of a reaction network endowed with mass action type kinetics is a system of polynomial differential equations. The problem studied here is: Given a system of polynomial differential equations, is it possible to find a network which induces these equations; in other words: is it possible to find a kinetic realization of this system of differential equations? If yes, can we find a network with some chemically relevant properties (implying also important dynamic consequences), such as reversibility, weak reversibility, zero deficiency, detailed balancing, complex balancing, mass conservation, etc.? The constructive answers presented to a series of questions of the above type are useful when fitting differential equations to datasets, or when trying to find out the dynamic behavior of the solutions of differential equations. It turns out that some of these results can be applied when trying to solve seemingly unrelated mathematical problems, like the existence of positive solutions to algebraic equations.
en
dc.format.extent
31 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
kinetic equations
en
dc.subject
reversibility
en
dc.subject
weak reversibility
en
dc.subject
mass action kinetics
en
dc.subject
reaction networks
en
dc.subject
realizations
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Realizations of kinetic differential equations
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.3934/mbe.2020046
dcterms.bibliographicCitation.journaltitle
Mathematical biosciences and engineering
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
862
dcterms.bibliographicCitation.pageend
892
dcterms.bibliographicCitation.volume
17
dcterms.bibliographicCitation.url
https://doi.org/10.3934/mbe.2020046
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik / Diskrete Biomathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1547-1063
dcterms.isPartOf.eissn
1551-0018
refubium.resourceType.provider
WoS-Alert