dc.contributor.author
Pareeth, Sajid
dc.contributor.author
Delucchi, Luca
dc.contributor.author
Metz, Markus
dc.contributor.author
Rocchini, Duccio
dc.contributor.author
Devasthale, Abhay
dc.contributor.author
Raspaud, Martin
dc.contributor.author
Adrian, Rita
dc.contributor.author
Salmaso, Nico
dc.contributor.author
Neteler, Markus
dc.date.accessioned
2019-11-13T08:58:59Z
dc.date.available
2019-11-13T08:58:59Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25913
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25672
dc.description.abstract
Analyzing temporal series of satellite data for regional scale studies demand high accuracy in calibration and precise geo-rectification at higher spatial resolution. The Advanced Very High Resolution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric Administration (NOAA) series of satellites provide daily observations for the last 30 years at a nominal resolution of 1.1 km at nadir. However, complexities due to on-board malfunctions and orbital drifts with the earlier missions hinder the usage of these images at their original resolution. In this study, we developed a new method using multiple open source tools which can read level 1B radiances, apply solar and thermal calibration to the channels, remove bow-tie effects on wider zenith angles, correct for clock drifts on earlier images and perform precise geo-rectification by automated generation and filtering of ground control points using a feature matching technique. The entire workflow is reproducible and extendable to any other geographical location. We developed a time series of brightness temperature maps from AVHRR local area coverage images covering the sub alpine lakes of Northern Italy at 1 km resolution (1986–2014; 28 years). For the validation of derived brightness temperatures, we extracted Lake Surface Water Temperature (LSWT) for Lake Garda in Northern Italy and performed inter-platform (NOAA-x vs. NOAA-y) and cross-platform (NOAA-x vs. MODIS/ATSR/AATSR) comparisons. The MAE calculated over available same day observations between the pairs—NOAA-12/14, NOAA-17/18 and NOAA-18/19 are 1.18 K, 0.67 K, 0.35 K, respectively. Similarly, for cross-platform pairs, the MAE varied between 0.5 to 1.5 K. The validation of LSWT from various NOAA instruments with in-situ data shows high accuracy with mean R2 and RMSE of 0.97 and 0.91 K respectively.
en
dc.format.extent
28 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
remote sensing
en
dc.subject
thermal calibration
en
dc.subject
brightness temperature
en
dc.subject
geo-rectification
en
dc.subject
image navigation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::577 Ökologie
dc.title
New automated method to develop geometrically corrected time series of brightness temperatures from historical AVHRR LAC data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.3390/rs8030169
dcterms.bibliographicCitation.journaltitle
Remote sensing
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
169
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.3390/rs8030169
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie / Arbeitsbereich Zoologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2072-4292