dc.contributor.author
Blagojevic, Pavle V. M.
dc.contributor.author
Palic, Nevena
dc.contributor.author
Soberon, Pablo
dc.contributor.author
Ziegler, Günther M.
dc.date.accessioned
2019-11-07T12:56:12Z
dc.date.available
2019-11-07T12:56:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25898
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25657
dc.description.abstract
Holmsen, Kyncˇl and Valculescu recently conjectured that if a finite set X with in points in Rd that is colored by m different colors can be partitioned into n subsets of i points each, such that each subset contains points of at least d different colors, then there exists such a partition of X with the additional property that the convex hulls of the n subsets are pairwise disjoint.
We prove a continuous analogue of this conjecture, generalized so that each subset contains points of at least c different colors, where we also allow c to be greater than d. Furthermore, we give lower bounds on the fraction of the points each of the subsets contains from c different colors. For example, when n ≤ 2, d ≤ 2, c ≤ d with m ≤ n(c - d) d are integers, and µ1, . . . ,µm are
m positive finite absolutely continuous measures on Rd , we prove that there exists a partition of Rd
into n convex pieces which equiparts the measures µ1, . . . ,µd−1, and in addition every piece of the partition has positive measure with respect to at least c of the measures µ1, . . . ,µm .
2010 Mathematics Subject Classification: 52C35, 51M20 (primary); 55R20, 55N25 (secondary)
en
dc.format.extent
34 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Cutting a part from many measures
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e37
dcterms.bibliographicCitation.doi
10.1017/fms.2019.33
dcterms.bibliographicCitation.journaltitle
Forum of Mathematics, Sigma
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.1017/fms.2019.33
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin und der DFG gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2050-5094
dcterms.isPartOf.eissn
2050-5094