dc.contributor.author
Kshetrimayum, A.
dc.contributor.author
Rizzi, M.
dc.contributor.author
Eisert, Jens
dc.contributor.author
Orús, R.
dc.date.accessioned
2019-11-06T10:48:03Z
dc.date.available
2019-11-06T10:48:03Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25890
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25650
dc.description.abstract
Tensor network methods have become a powerful class of tools to capture strongly correlated matter, but methods to capture the experimentally ubiquitous family of models at finite temperature beyond one spatial dimension are largely lacking. We introduce a tensor network algorithm able to simulate thermal states of two-dimensional quantum lattice systems in the thermodynamic limit. The method develops instances of projected entangled pair states and projected entangled pair operators for this purpose. It is the key feature of this algorithm to resemble the cooling down of the system from an infinite temperature state until it reaches the desired finite-temperature regime. As a benchmark, we study the finite-temperature phase transition of the Ising model on an infinite square lattice, for which we obtain remarkable agreement with the exact solution. We then turn to study the finite-temperature Bose-Hubbard model in the limits of two (hard-core) and three bosonic modes per site. Our technique can be used to support the experimental study of actual effectively two-dimensional materials in the laboratory, as well as to benchmark optical lattice quantum simulators with ultracold atoms.
en
dc.format.extent
6 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
quantum simulation
en
dc.subject
quantum statistical mechanics
en
dc.subject
strongly correlated systems
en
dc.subject
tensor network methods
en
dc.subject
quantum information
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Tensor network annealing algorithm for two-dimensional thermal states
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
070502
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.122.070502
dcterms.bibliographicCitation.journaltitle
Physical review
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.volume
122
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevLett.122.070502
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9950
dcterms.isPartOf.eissn
2469-9969